真空中绝缘子发生沿面闪络之前存在绝缘子表面的带电现象,该现象对闪络的发展具有重要影响,到目前为止对该现象进行实时测量还存在很大的难度。基于二次电子发射雪崩(secondary electron emission avalanche,SEEA)模型,利用Monte Carlo...真空中绝缘子发生沿面闪络之前存在绝缘子表面的带电现象,该现象对闪络的发展具有重要影响,到目前为止对该现象进行实时测量还存在很大的难度。基于二次电子发射雪崩(secondary electron emission avalanche,SEEA)模型,利用Monte Carlo法研究了真空中圆柱型和圆台型绝缘子在闪络前表面电荷密度的二维分布。仿真中采用了氧化铝陶瓷、聚四氟乙烯(PTFE)、聚酰亚胺(PI)以及聚甲基丙烯酸甲酯(PMMA)等不同绝缘材料。考察了绝缘材料、施加电压以及圆锥绝缘子不同锥角对表面电荷密度和分布的影响。仿真结果表明,在靠近阴极处的绝缘子表面存在小区域的负电荷区,而后变为较大区域的正电荷区;二次电子发射系数较小的绝缘子表面的正电荷密度较小;随外施电压升高,负电荷的密度及区域减小,而正电荷的密度及区域增大,且正电荷区域的峰值向靠近阴极方向移动;圆台绝缘子的锥角为负时其表面正电荷密度大于锥角为正时的情况,当锥角在-22.5°~-30°之间时表面正电荷密度达到最大,而此时对应的闪络电压最低。仿真结果与实验结果有较好的对应关系。展开更多
电推进在轨工作时将产生低温稠密等离子体,与地球同步轨道的空间离子体特性存在较大差异,且等离子体中的低速交换电荷离子易受到卫星表面电位的作用,形成返流并作用于卫星表面材料,对航天器表面充放电效应产生重要的影响。为此,综合考...电推进在轨工作时将产生低温稠密等离子体,与地球同步轨道的空间离子体特性存在较大差异,且等离子体中的低速交换电荷离子易受到卫星表面电位的作用,形成返流并作用于卫星表面材料,对航天器表面充放电效应产生重要的影响。为此,综合考虑材料二次电子和背散射电子发射电流,分析电推进产生等离子体充电电流特性,基于充放电平衡方程进行电推进等离子体及空间等离子体共同作用下的表面带电机理研究。研究结果表明:地磁亚暴时期,航天器表面受到地球同步轨道等离子体的影响,其表面电位可高达–10~4 k V;电推进工作时,其羽流等离子体充电电流为10-3 A/m^2,远大于空间等离子体充电电流,从而成为卫星表面带电的主要影响因素;同时电推进等离子体将航天器表面电位中和至–10 V,即电推进交换电荷返流可以有效缓解由空间等离子体造成的危害性表面充放电效应。展开更多
文摘真空中绝缘子发生沿面闪络之前存在绝缘子表面的带电现象,该现象对闪络的发展具有重要影响,到目前为止对该现象进行实时测量还存在很大的难度。基于二次电子发射雪崩(secondary electron emission avalanche,SEEA)模型,利用Monte Carlo法研究了真空中圆柱型和圆台型绝缘子在闪络前表面电荷密度的二维分布。仿真中采用了氧化铝陶瓷、聚四氟乙烯(PTFE)、聚酰亚胺(PI)以及聚甲基丙烯酸甲酯(PMMA)等不同绝缘材料。考察了绝缘材料、施加电压以及圆锥绝缘子不同锥角对表面电荷密度和分布的影响。仿真结果表明,在靠近阴极处的绝缘子表面存在小区域的负电荷区,而后变为较大区域的正电荷区;二次电子发射系数较小的绝缘子表面的正电荷密度较小;随外施电压升高,负电荷的密度及区域减小,而正电荷的密度及区域增大,且正电荷区域的峰值向靠近阴极方向移动;圆台绝缘子的锥角为负时其表面正电荷密度大于锥角为正时的情况,当锥角在-22.5°~-30°之间时表面正电荷密度达到最大,而此时对应的闪络电压最低。仿真结果与实验结果有较好的对应关系。
文摘电推进在轨工作时将产生低温稠密等离子体,与地球同步轨道的空间离子体特性存在较大差异,且等离子体中的低速交换电荷离子易受到卫星表面电位的作用,形成返流并作用于卫星表面材料,对航天器表面充放电效应产生重要的影响。为此,综合考虑材料二次电子和背散射电子发射电流,分析电推进产生等离子体充电电流特性,基于充放电平衡方程进行电推进等离子体及空间等离子体共同作用下的表面带电机理研究。研究结果表明:地磁亚暴时期,航天器表面受到地球同步轨道等离子体的影响,其表面电位可高达–10~4 k V;电推进工作时,其羽流等离子体充电电流为10-3 A/m^2,远大于空间等离子体充电电流,从而成为卫星表面带电的主要影响因素;同时电推进等离子体将航天器表面电位中和至–10 V,即电推进交换电荷返流可以有效缓解由空间等离子体造成的危害性表面充放电效应。