Defect-based engineering of carbon nanostructures is becoming an important and powerful method to modify the electron transport properties in graphene nanoribbon FETs. In this paper, the impact of the position and sym...Defect-based engineering of carbon nanostructures is becoming an important and powerful method to modify the electron transport properties in graphene nanoribbon FETs. In this paper, the impact of the position and symmetry of the ISTW defect on the performance of low dimensional 9AGNR double-gate graphene nanoribbon FET (DG-GNRFET) is investigated. Analyzing the transmission spectra, density of states and current-voltage characteristics shows that the defect effect on the electron transport is considerably varied depending on the positions and the orientations (the symmetric and asymmetric configuration) of the ISTW defect in the channel length. Based on the results, the asymmetric ISTW defect leads to a more controllability of the gate voltages over drain current, and drain current increases more than 5 times. The results have also con rmed the ISTW defect engineering potential on controlling the channel electrical current of DG-AGNR FET.展开更多
We investigate a tight-binding model of the ruby lattice with Rashba spin-orbit coupling. We calculate the band structure of the lattice and evaluate the Z2 topological indices. According to the Z2 topological indices...We investigate a tight-binding model of the ruby lattice with Rashba spin-orbit coupling. We calculate the band structure of the lattice and evaluate the Z2 topological indices. According to the Z2 topological indices and the band structure, we present the phase diagrams of the lattice with different filling fractions. We findthat topological insulators occur in some range of parameters at 1/6, 1/3, 1/2, 2/3 and 5/6 filling fractions. We analyze and discuss the characteristics of these topological insulators and their edge states.展开更多
文摘Defect-based engineering of carbon nanostructures is becoming an important and powerful method to modify the electron transport properties in graphene nanoribbon FETs. In this paper, the impact of the position and symmetry of the ISTW defect on the performance of low dimensional 9AGNR double-gate graphene nanoribbon FET (DG-GNRFET) is investigated. Analyzing the transmission spectra, density of states and current-voltage characteristics shows that the defect effect on the electron transport is considerably varied depending on the positions and the orientations (the symmetric and asymmetric configuration) of the ISTW defect in the channel length. Based on the results, the asymmetric ISTW defect leads to a more controllability of the gate voltages over drain current, and drain current increases more than 5 times. The results have also con rmed the ISTW defect engineering potential on controlling the channel electrical current of DG-AGNR FET.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 11004028 and 11274061
文摘We investigate a tight-binding model of the ruby lattice with Rashba spin-orbit coupling. We calculate the band structure of the lattice and evaluate the Z2 topological indices. According to the Z2 topological indices and the band structure, we present the phase diagrams of the lattice with different filling fractions. We findthat topological insulators occur in some range of parameters at 1/6, 1/3, 1/2, 2/3 and 5/6 filling fractions. We analyze and discuss the characteristics of these topological insulators and their edge states.