针对混合曝光成像算法过程中会出现低曝光处细节丢失且颜色失真饱和度不佳导致视觉观感下降的问题,提出一种多尺度权重评估的MSRCR(Multi-Scale Retinex with Color Restoration,MSRCR)混合曝光融合算法。基于Retinex模型将待融合图像...针对混合曝光成像算法过程中会出现低曝光处细节丢失且颜色失真饱和度不佳导致视觉观感下降的问题,提出一种多尺度权重评估的MSRCR(Multi-Scale Retinex with Color Restoration,MSRCR)混合曝光融合算法。基于Retinex模型将待融合图像分解为亮度分量与反射光分量,对亮度分量结合ACES函数构造光照补偿归一化函数进行处理,对反射光分量加入颜色恢复函数提升色彩细节;分别从曝光量、饱和度、对比度、色域四个尺度设计图像融合权重值,通过多尺度评估优化融合比例;利用Laplacian金字塔融合算法进行多尺度权重融合获得最终图像。实验结果表明,与传统的图像融合算法相比,该算法处理效果较好,有效降低了暗处失真率,提升了视觉信息保真度。展开更多
针对现有Retinex算法中存在的色彩失真、噪声放大及光晕伪影现象等问题,本文提出了一种基于Retinex理论的改进算法.该算法首先在HSV空间对亮度分量V通道进行增强处理,同时在拉伸得到的对数域反射分量至一定的动态范围时(本文是0~255),...针对现有Retinex算法中存在的色彩失真、噪声放大及光晕伪影现象等问题,本文提出了一种基于Retinex理论的改进算法.该算法首先在HSV空间对亮度分量V通道进行增强处理,同时在拉伸得到的对数域反射分量至一定的动态范围时(本文是0~255),引入增强调整因子,调整不同亮度值的增强程度来避免噪声放大及色彩失真现象;然后在RGB空间,通过分析光晕产生的原因,提出一种改进的高斯滤波器来消除光晕现象,并在计算反射分量时,通过参数调整图像颜色的保真度.最后,对上述两种不同颜色空间的处理结果进行加权平均作为算法的最终输出.实验结果表明,针对不同光照条件下的图像,1)该算法可以明显地改善光晕伪影现象;2)无色彩失真、噪声放大等问题;3)效果和效率优于带色彩恢复的多尺度Retinex算法(Multi-scale retinex with color restoration,MSRCR)及其他对比算法.展开更多
为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法的改进YOLOv4tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像...为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法的改进YOLOv4tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像特征增强预处理,提高图像的对比度和细节质量;然后使用Mosaic在线数据增强方式,丰富目标检测背景,提高训练效率和小目标的检测精度;最后对YOLOv4tiny模型使用K-means++聚类算法进行先验框聚类分析和通道剪枝处理。改进和简化后的模型总参数量降低了45.3%,模型占用内存减少了45.8%,平均精度均值(Mean average precision,mAP)提高了2.5个百分点,在Jetson Nano嵌入式平台上平均检测帧耗时减少了22.4%。本文提出的PruneYOLOv4tiny模型与Faster RCNN、YOLOv3tiny、YOLOv43种常用的目标检测模型进行比较,结果表明:PruneYOLOv4tiny的mAP为96.6%,分别比Faster RCNN和YOLOv3tiny高22.1个百分点和3.6个百分点,比YOLOv4低1.2个百分点;模型占用内存为12.2 MB,是Faster RCNN的3.4%,YOLOv3tiny的36.9%,YOLOv4的5%;在Jetson Nano嵌入式平台上平均检测帧耗时为131 ms,分别是YOLOv3tiny和YOLOv4模型的32.1%和7.6%。可知本文提出的优化方法在模型占用内存、检测耗时和检测精度等方面优于其他常用目标检测算法,能够为硬件资源有限的田间精准除草的系统提供可行的实时杂草识别方法。展开更多
文摘针对混合曝光成像算法过程中会出现低曝光处细节丢失且颜色失真饱和度不佳导致视觉观感下降的问题,提出一种多尺度权重评估的MSRCR(Multi-Scale Retinex with Color Restoration,MSRCR)混合曝光融合算法。基于Retinex模型将待融合图像分解为亮度分量与反射光分量,对亮度分量结合ACES函数构造光照补偿归一化函数进行处理,对反射光分量加入颜色恢复函数提升色彩细节;分别从曝光量、饱和度、对比度、色域四个尺度设计图像融合权重值,通过多尺度评估优化融合比例;利用Laplacian金字塔融合算法进行多尺度权重融合获得最终图像。实验结果表明,与传统的图像融合算法相比,该算法处理效果较好,有效降低了暗处失真率,提升了视觉信息保真度。
文摘针对现有Retinex算法中存在的色彩失真、噪声放大及光晕伪影现象等问题,本文提出了一种基于Retinex理论的改进算法.该算法首先在HSV空间对亮度分量V通道进行增强处理,同时在拉伸得到的对数域反射分量至一定的动态范围时(本文是0~255),引入增强调整因子,调整不同亮度值的增强程度来避免噪声放大及色彩失真现象;然后在RGB空间,通过分析光晕产生的原因,提出一种改进的高斯滤波器来消除光晕现象,并在计算反射分量时,通过参数调整图像颜色的保真度.最后,对上述两种不同颜色空间的处理结果进行加权平均作为算法的最终输出.实验结果表明,针对不同光照条件下的图像,1)该算法可以明显地改善光晕伪影现象;2)无色彩失真、噪声放大等问题;3)效果和效率优于带色彩恢复的多尺度Retinex算法(Multi-scale retinex with color restoration,MSRCR)及其他对比算法.
文摘为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法的改进YOLOv4tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像特征增强预处理,提高图像的对比度和细节质量;然后使用Mosaic在线数据增强方式,丰富目标检测背景,提高训练效率和小目标的检测精度;最后对YOLOv4tiny模型使用K-means++聚类算法进行先验框聚类分析和通道剪枝处理。改进和简化后的模型总参数量降低了45.3%,模型占用内存减少了45.8%,平均精度均值(Mean average precision,mAP)提高了2.5个百分点,在Jetson Nano嵌入式平台上平均检测帧耗时减少了22.4%。本文提出的PruneYOLOv4tiny模型与Faster RCNN、YOLOv3tiny、YOLOv43种常用的目标检测模型进行比较,结果表明:PruneYOLOv4tiny的mAP为96.6%,分别比Faster RCNN和YOLOv3tiny高22.1个百分点和3.6个百分点,比YOLOv4低1.2个百分点;模型占用内存为12.2 MB,是Faster RCNN的3.4%,YOLOv3tiny的36.9%,YOLOv4的5%;在Jetson Nano嵌入式平台上平均检测帧耗时为131 ms,分别是YOLOv3tiny和YOLOv4模型的32.1%和7.6%。可知本文提出的优化方法在模型占用内存、检测耗时和检测精度等方面优于其他常用目标检测算法,能够为硬件资源有限的田间精准除草的系统提供可行的实时杂草识别方法。