In order to improve the bandwidth of the conventional sub-harmonic mixer, a broad-band, high intermediate frequency(IF) sub-harmonic mixer for W-band applications is proposed. Replacing the open and short stubs that...In order to improve the bandwidth of the conventional sub-harmonic mixer, a broad-band, high intermediate frequency(IF) sub-harmonic mixer for W-band applications is proposed. Replacing the open and short stubs that are used in the convertional sub-harmonic mixer with a broad-band band-pass filter and a low-pass filter, respectively, a wide operating frequency band is achieved. Furthermore, without the use of the edge-coupled band-pass filter at radio frequency(RF) port, the proposed structure can be realized by common hybrid microwave integrated circuit technology at W- band. The measured results show that the proposed subharmonic mixer can operate from 80 to 107.5 GHz for RF frequency and support up to 18 GHz for the IF bandwidth. Also, the measured results show that the single-sideband conversion loss is less than 13. 7 dB over the available RF frequency band, while the minimum conversion loss is about 9 dB at an RF of 92. 5 GHz and an 1F of 3 GHz. Thus, a large operating bandwidth performance at W-band can be achieved by the orooosed mixer.展开更多
Forced response analysis of a rocket engine turbine blade was conducted by a decoupled fluid-structure interaction procedure.Aerodynamic forces on the rotor blade were obtained using 3D unsteady flow simulations. The ...Forced response analysis of a rocket engine turbine blade was conducted by a decoupled fluid-structure interaction procedure.Aerodynamic forces on the rotor blade were obtained using 3D unsteady flow simulations. The resulting aerodynamic forces were interpolated to the finite element(FE) model through surface effect elements prior to conducting forced response calculations.Effects of axial gap on aerodynamic forces were studied. In addition, influence of axial gap on the response of the shrouded blade was compared with that on the response of the unshrouded blade. Results demonstrated that as the axial gap increases,time-averaged pressure on the blade surface changes very little, while the pressure fluctuations decrease significantly. Pressure and aerodynamic forces on the blade surface display periodic variation, and the vane passing frequency component is dominant.Amplitudes of aerodynamic forces decrease with increasing axial gap. Restricted by the shroud, deformation and response of shrouded blade are much lower than those of the unshrouded blade. The response of unshrouded blade shows obvious beat vibration phenomenon, while the response of the shrouded blade does not have this characteristic because the shroud restrains multiple harmonics. Blade response in time domain was converted to frequency domain using fast Fourier transformation(FFT).Results revealed that the axial gap mainly affects the forced harmonic at the vane passing frequency, while the other two harmonics at natural frequency are hardly affected. Amplitudes of the unshrouded blade response decrease as the axial gap increases, while amplitudes of the shrouded blade response change very little in comparison.展开更多
A dual-band bandpass microwave photonic filter(MPF) based on stimulated Brillouin scattering(SBS) is theoretically analyzed and experimentally demonstrated. Two separated tunable laser sources(TLSs) are employed to ge...A dual-band bandpass microwave photonic filter(MPF) based on stimulated Brillouin scattering(SBS) is theoretically analyzed and experimentally demonstrated. Two separated tunable laser sources(TLSs) are employed to generate two passbands by implementing phase modulation to amplitude modulation conversion by using SBS induced sideband amplification. The center frequencies of both passbands can be independently tuned ranging from 1 GHz to 19 GHz. High resolution with 3 d B bandwidth less than 30 MHz and large out-of-band rejection about 40 d B under 25 m W optical pump power are achieved.展开更多
The extended two-mass model is adopted to analyze the nonlinear oscillation of pathological vocal folds during vocalization. Redundant tissue or area in laryngeal patients is modeled as a massless rigid connected to t...The extended two-mass model is adopted to analyze the nonlinear oscillation of pathological vocal folds during vocalization. Redundant tissue or area in laryngeal patients is modeled as a massless rigid connected to the upper mass of the vocal folds, and a parameter Q is introduced to represent the change of glottal configurations and tension imbalance between the left and right sides of vocal folds. Numerical simulations demonstrate that the pathological vocal-fold decreases the threshold of Q to generate nonlinear vocal oscillation, indicating the improvement of the sensitivity of vocal folds to asymmetries and enhancing the coupling between two sides. Furthermore, the pathological vocal-fold can lower the fundamental frequency and eliminate high-order harmonics, For example, the fundamental frequency decreases from 119.94 Hz to 84.95 Hz when Q=0.58 and the sub-glottal pressure 1450 Pa. However, there are no prominent effects on the amplitudes of sub-harmonic and low-order harmonics.展开更多
We propose a compact dual-band bandpass filter(BPF)based on one-dimensional porous silicon(PS)photonic crystal by electrochemical etching.By inserting three periods of high and low reflective index layers in the cente...We propose a compact dual-band bandpass filter(BPF)based on one-dimensional porous silicon(PS)photonic crystal by electrochemical etching.By inserting three periods of high and low reflective index layers in the center of porous silicon microcavity(PSM),two sharp resonant peaks appear in the high reflectivity stop band on both sides of the resonance wavelength.Through simulation and experiment,the physical mechanisms of the two resonance peaks and the resonance wavelength are also studied.It is found that the resonance wavelength can be tuned only by adjusting the effective optical thickness(EOT)of each PS layer,in which different resonance wavelengths have different widths between the two sharp resonance peaks.Besides,the analysis indicates that oxidization makes the blue shift become larger for high wavelength than that for low wavelength.Such a fabricated BPF based on PS dual-microcavity is easy to be fabricated and low cost,which benefits the application of integrated optical devices.展开更多
An all-optical format conversion from non-return-to-zero (NRZ) to return-to-zero (RZ) is presented based on cross-phase modulation (XPM) in a silicon waveguide with a detuned optical bandpass filter (OBPF). Th...An all-optical format conversion from non-return-to-zero (NRZ) to return-to-zero (RZ) is presented based on cross-phase modulation (XPM) in a silicon waveguide with a detuned optical bandpass filter (OBPF). The simulation results show that the tunable bandwidth of the OBPF leads.to RZ signals with tunable pulse width. The conversion efficiency (CE) and the pattern effect of the RZ signal are attributed to the parameters of the pump pulse and the OBPE The converted RZ signal exhibits lower timing jitter than the NRZ signal.展开更多
A new method is presented to fabricate the triangular fiber Bragg grating(TFBG).The fabrication device is simple,only requires a single exposure and does not need to write complicated program.The transfer matrix metho...A new method is presented to fabricate the triangular fiber Bragg grating(TFBG).The fabrication device is simple,only requires a single exposure and does not need to write complicated program.The transfer matrix method is used to design the fiber Bragg grating,and the grating resonant wavelength and the grating reflectivity can be controlled in order to achieve the triangular spectrum.With different fiber tilt angles,the available bandwidth of TFBG,the linearity and the oblique gradient are also different.In the experiment,the angles 1°,1.5° and 2° are chosen.The results show that the best angle value is 1.5°,and the TFBG has a good linearity,greater gradient and wider available bandwidth.展开更多
A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave...A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave photonic filter (MPF). In order to obtain notch frequency response, a Fourier-domain optical processor (FD-OP) is introduced to con- trol the amplitude and phase of the optical carrier and phase modulation sidebands. By adjusting the polarization con- troller (PC), different numbers of taps are got, such as 6, 8, 10 and 121 And the wavelength-spacing of the multi-wavelength laser is 0.4 nm. The bandwidth of the notch filter is changed by adjusting the number of taps and the corresponding bandwidths are 4.41 GHz, 3.30 GHz, 2.64 GHz and 2.19 GHz, respectively. With the additional phase shift introduced by FD-OP, the notch position is continuously ttmed in the whole free spectral range (FSR) of 27.94 GHz. The center frequency of the notch filter can be continuously tuned from 13.97 GHz to 41.91 GHz.展开更多
A terahertz bandpass filter with the sandwich structure consisting of thermally tunable vanadium dioxide(VO2) thin film,silica substrate and subwavelength rectangular Cu hole arrays is designed and theoretically analy...A terahertz bandpass filter with the sandwich structure consisting of thermally tunable vanadium dioxide(VO2) thin film,silica substrate and subwavelength rectangular Cu hole arrays is designed and theoretically analyzed.The results show that the transmittance of the filter can be actively tuned by controlling the temperature of VO2,the narrow band terahertz(THz) waves with the transmittance from 85.2% to 10.5% can be well selected at the frequency of 1.25 THz when the temperature changes from 50 ℃ to 80 ℃,and the maximum modulation depth of this terahertz bandpass filter can achieve 74.7%.展开更多
基金Research Foundation of China ( No.9140A01020209JW0601)
文摘In order to improve the bandwidth of the conventional sub-harmonic mixer, a broad-band, high intermediate frequency(IF) sub-harmonic mixer for W-band applications is proposed. Replacing the open and short stubs that are used in the convertional sub-harmonic mixer with a broad-band band-pass filter and a low-pass filter, respectively, a wide operating frequency band is achieved. Furthermore, without the use of the edge-coupled band-pass filter at radio frequency(RF) port, the proposed structure can be realized by common hybrid microwave integrated circuit technology at W- band. The measured results show that the proposed subharmonic mixer can operate from 80 to 107.5 GHz for RF frequency and support up to 18 GHz for the IF bandwidth. Also, the measured results show that the single-sideband conversion loss is less than 13. 7 dB over the available RF frequency band, while the minimum conversion loss is about 9 dB at an RF of 92. 5 GHz and an 1F of 3 GHz. Thus, a large operating bandwidth performance at W-band can be achieved by the orooosed mixer.
文摘Forced response analysis of a rocket engine turbine blade was conducted by a decoupled fluid-structure interaction procedure.Aerodynamic forces on the rotor blade were obtained using 3D unsteady flow simulations. The resulting aerodynamic forces were interpolated to the finite element(FE) model through surface effect elements prior to conducting forced response calculations.Effects of axial gap on aerodynamic forces were studied. In addition, influence of axial gap on the response of the shrouded blade was compared with that on the response of the unshrouded blade. Results demonstrated that as the axial gap increases,time-averaged pressure on the blade surface changes very little, while the pressure fluctuations decrease significantly. Pressure and aerodynamic forces on the blade surface display periodic variation, and the vane passing frequency component is dominant.Amplitudes of aerodynamic forces decrease with increasing axial gap. Restricted by the shroud, deformation and response of shrouded blade are much lower than those of the unshrouded blade. The response of unshrouded blade shows obvious beat vibration phenomenon, while the response of the shrouded blade does not have this characteristic because the shroud restrains multiple harmonics. Blade response in time domain was converted to frequency domain using fast Fourier transformation(FFT).Results revealed that the axial gap mainly affects the forced harmonic at the vane passing frequency, while the other two harmonics at natural frequency are hardly affected. Amplitudes of the unshrouded blade response decrease as the axial gap increases, while amplitudes of the shrouded blade response change very little in comparison.
基金supported by the Science and Technology Development Plan of Jilin Province(Nos.20150204003GX and 20160519010JH)the Science and Technology Plan of Changchun(No.14KG019)
文摘A dual-band bandpass microwave photonic filter(MPF) based on stimulated Brillouin scattering(SBS) is theoretically analyzed and experimentally demonstrated. Two separated tunable laser sources(TLSs) are employed to generate two passbands by implementing phase modulation to amplitude modulation conversion by using SBS induced sideband amplification. The center frequencies of both passbands can be independently tuned ranging from 1 GHz to 19 GHz. High resolution with 3 d B bandwidth less than 30 MHz and large out-of-band rejection about 40 d B under 25 m W optical pump power are achieved.
基金supported by the National Basic Research Program of China(Grant No. 2011CB707900)the National Natural Science Foundation of China(Grant Nos. 81127901, 11174141 and 11161120324)the State Key Laboratory of Acoustics, Chinese Academy of Sciences
文摘The extended two-mass model is adopted to analyze the nonlinear oscillation of pathological vocal folds during vocalization. Redundant tissue or area in laryngeal patients is modeled as a massless rigid connected to the upper mass of the vocal folds, and a parameter Q is introduced to represent the change of glottal configurations and tension imbalance between the left and right sides of vocal folds. Numerical simulations demonstrate that the pathological vocal-fold decreases the threshold of Q to generate nonlinear vocal oscillation, indicating the improvement of the sensitivity of vocal folds to asymmetries and enhancing the coupling between two sides. Furthermore, the pathological vocal-fold can lower the fundamental frequency and eliminate high-order harmonics, For example, the fundamental frequency decreases from 119.94 Hz to 84.95 Hz when Q=0.58 and the sub-glottal pressure 1450 Pa. However, there are no prominent effects on the amplitudes of sub-harmonic and low-order harmonics.
基金supported by the National Training Program of Innovation and Entrepreneurship for Undergraduate(No.201410755013)the Foundation of Xinjiang Education(No.XJEDU2013S04)
文摘We propose a compact dual-band bandpass filter(BPF)based on one-dimensional porous silicon(PS)photonic crystal by electrochemical etching.By inserting three periods of high and low reflective index layers in the center of porous silicon microcavity(PSM),two sharp resonant peaks appear in the high reflectivity stop band on both sides of the resonance wavelength.Through simulation and experiment,the physical mechanisms of the two resonance peaks and the resonance wavelength are also studied.It is found that the resonance wavelength can be tuned only by adjusting the effective optical thickness(EOT)of each PS layer,in which different resonance wavelengths have different widths between the two sharp resonance peaks.Besides,the analysis indicates that oxidization makes the blue shift become larger for high wavelength than that for low wavelength.Such a fabricated BPF based on PS dual-microcavity is easy to be fabricated and low cost,which benefits the application of integrated optical devices.
文摘An all-optical format conversion from non-return-to-zero (NRZ) to return-to-zero (RZ) is presented based on cross-phase modulation (XPM) in a silicon waveguide with a detuned optical bandpass filter (OBPF). The simulation results show that the tunable bandwidth of the OBPF leads.to RZ signals with tunable pulse width. The conversion efficiency (CE) and the pattern effect of the RZ signal are attributed to the parameters of the pump pulse and the OBPE The converted RZ signal exhibits lower timing jitter than the NRZ signal.
基金supported by the National Natural Science Foundation of China (Nos.60771008 and 60837002)the Natural Science Foundation of Beijing (No.4082024)+1 种基金the Ph.D. Programs Foundation of Ministry of Education of China (No.20090009110003)the Foundation for the Returning Scholars (No.2008890)
文摘A new method is presented to fabricate the triangular fiber Bragg grating(TFBG).The fabrication device is simple,only requires a single exposure and does not need to write complicated program.The transfer matrix method is used to design the fiber Bragg grating,and the grating resonant wavelength and the grating reflectivity can be controlled in order to achieve the triangular spectrum.With different fiber tilt angles,the available bandwidth of TFBG,the linearity and the oblique gradient are also different.In the experiment,the angles 1°,1.5° and 2° are chosen.The results show that the best angle value is 1.5°,and the TFBG has a good linearity,greater gradient and wider available bandwidth.
基金supported by the National Natural Science Foundation of China(No.11444001)the Municipal Natural Science Foundation of Tianjin in China(No.14JCYBJC16500)
文摘A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave photonic filter (MPF). In order to obtain notch frequency response, a Fourier-domain optical processor (FD-OP) is introduced to con- trol the amplitude and phase of the optical carrier and phase modulation sidebands. By adjusting the polarization con- troller (PC), different numbers of taps are got, such as 6, 8, 10 and 121 And the wavelength-spacing of the multi-wavelength laser is 0.4 nm. The bandwidth of the notch filter is changed by adjusting the number of taps and the corresponding bandwidths are 4.41 GHz, 3.30 GHz, 2.64 GHz and 2.19 GHz, respectively. With the additional phase shift introduced by FD-OP, the notch position is continuously ttmed in the whole free spectral range (FSR) of 27.94 GHz. The center frequency of the notch filter can be continuously tuned from 13.97 GHz to 41.91 GHz.
基金supported by the National High Technology Research and Development Program of China(No.2011AA010205)the National Natural Science Foundation of China(Nos.61171027 and 10904076)the Tianjin City High School Science&Technology Fund Planning Project(No.20120706)
文摘A terahertz bandpass filter with the sandwich structure consisting of thermally tunable vanadium dioxide(VO2) thin film,silica substrate and subwavelength rectangular Cu hole arrays is designed and theoretically analyzed.The results show that the transmittance of the filter can be actively tuned by controlling the temperature of VO2,the narrow band terahertz(THz) waves with the transmittance from 85.2% to 10.5% can be well selected at the frequency of 1.25 THz when the temperature changes from 50 ℃ to 80 ℃,and the maximum modulation depth of this terahertz bandpass filter can achieve 74.7%.