锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识...锂电池荷电状态(state of charge,SOC)的准确估计依赖于精确的锂电池模型参数。在采用带遗忘因子的递推最小二乘法(forgetting factor recursive least square,FFRLS)对锂电池等效电路模型进行参数辨识时,迭代初始值选取不当会造成辨识精度低、收敛速度慢的问题。为此,将电路分析法与FFRLS相结合,提出基于改进初值带遗忘因子的递推最小二乘法(improved initial value-FFRLS,IIV-FFRLS)。首先,通过离线辨识得到各荷电状态点对应的等效电路模型参数并进行多项式拟合;然后,利用初始开路电压(open circuit voltage,OCV)和OCV-SOC曲线获得初始SOC,代入参数拟合函数得到初始参数;最后,将初始参数带入递推公式得到IIV-FFRLS迭代初始值。对4种锂电池工况进行参数辨识,结果表明:与传统方法相比,IIV-FFRLS的平均相对误差、收敛时间分别减小58%、23%以上;IIV-FFRLS具有更高的辨识精度与更快的收敛速度。展开更多
电池荷电状态SOC(state of charge)作为电池管理系统中尤为重要的一部分,其准确估计成为锂离子电池研究的重点;为了提高动态工况下的SOC估计精度,对锂离子电池等效模型进行分析,基于AIC(赤池信息)准则确定二阶RC电路为等效电路模型,使...电池荷电状态SOC(state of charge)作为电池管理系统中尤为重要的一部分,其准确估计成为锂离子电池研究的重点;为了提高动态工况下的SOC估计精度,对锂离子电池等效模型进行分析,基于AIC(赤池信息)准则确定二阶RC电路为等效电路模型,使用递推最小二乘算法对模型参数进行在线辨识,为提高辨识精度,提出了带动态遗忘因子递推最小二乘的改进算法,对算法加入遗忘因子,通过电压结果误差实时动态调整算法遗忘因子取值;将递推最小二乘算法和含动态遗忘因子最小二乘算法分别与扩展卡尔曼滤波(EKF)算法进行SOC联合估计,并对比其预测效果,结果表明含有动态遗忘因子最小二乘与EKF联合估计模型具有更高的精度和鲁棒性。展开更多
文摘电池荷电状态SOC(state of charge)作为电池管理系统中尤为重要的一部分,其准确估计成为锂离子电池研究的重点;为了提高动态工况下的SOC估计精度,对锂离子电池等效模型进行分析,基于AIC(赤池信息)准则确定二阶RC电路为等效电路模型,使用递推最小二乘算法对模型参数进行在线辨识,为提高辨识精度,提出了带动态遗忘因子递推最小二乘的改进算法,对算法加入遗忘因子,通过电压结果误差实时动态调整算法遗忘因子取值;将递推最小二乘算法和含动态遗忘因子最小二乘算法分别与扩展卡尔曼滤波(EKF)算法进行SOC联合估计,并对比其预测效果,结果表明含有动态遗忘因子最小二乘与EKF联合估计模型具有更高的精度和鲁棒性。