An efficient reduction system of benzaldehyde with hydrogen under ambient pressure was developed using facile NiO catalyst. The non-aromatic solvents such as cyclohexane, tetrahydrofuran (THF) and n-hexane, and the ad...An efficient reduction system of benzaldehyde with hydrogen under ambient pressure was developed using facile NiO catalyst. The non-aromatic solvents such as cyclohexane, tetrahydrofuran (THF) and n-hexane, and the addi-tive with strong basicity e.g. KOH, were necessary for smooth conversion of the substrate. That the catalyst can be recov-ered and reused for nine times without loss of catalytic activity indicates that this catalyst is a recyclable one for benzal-dehyde reduction.展开更多
The dissolution property of high-ferrite gibbsitic bauxite and the effect of ferrite content on the dissolution kinetics of gibbsitic bauxites in sodium hydroxide solution under atmospheric pressure from 50 to 90 ...The dissolution property of high-ferrite gibbsitic bauxite and the effect of ferrite content on the dissolution kinetics of gibbsitic bauxites in sodium hydroxide solution under atmospheric pressure from 50 to 90 °C were systematically investigated.The dissolution property of high-ferrite gibbsitic bauxite is increased by increasing the dissolution temperature and the Na OH concentration or decreasing the particle size of bauxite,which is easy to dissolve under atmospheric pressure.The kinetic equations of gibbsitic bauxites with different ferrite contents during the dissolution process at different temperatures for different times were established,and the corresponding activation energies were calculated.The ferrite in the gibbsitic bauxite reduces the dissolution speed and increases the activation energy of dissolution,the diffusion process of which is the rate-controlling step.展开更多
Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrol...Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions.展开更多
基金Supported by the National Natural Science Foundation of China (Nos.20576045, 20306009 and 202225620).
文摘An efficient reduction system of benzaldehyde with hydrogen under ambient pressure was developed using facile NiO catalyst. The non-aromatic solvents such as cyclohexane, tetrahydrofuran (THF) and n-hexane, and the addi-tive with strong basicity e.g. KOH, were necessary for smooth conversion of the substrate. That the catalyst can be recov-ered and reused for nine times without loss of catalytic activity indicates that this catalyst is a recyclable one for benzal-dehyde reduction.
基金Projects(51104041,51174054,51374065)supported by the National Natural Science Foundation of ChinaProject(N130402010)supported by the Fundamental Research Funds for the Central Universities of China
文摘The dissolution property of high-ferrite gibbsitic bauxite and the effect of ferrite content on the dissolution kinetics of gibbsitic bauxites in sodium hydroxide solution under atmospheric pressure from 50 to 90 °C were systematically investigated.The dissolution property of high-ferrite gibbsitic bauxite is increased by increasing the dissolution temperature and the Na OH concentration or decreasing the particle size of bauxite,which is easy to dissolve under atmospheric pressure.The kinetic equations of gibbsitic bauxites with different ferrite contents during the dissolution process at different temperatures for different times were established,and the corresponding activation energies were calculated.The ferrite in the gibbsitic bauxite reduces the dissolution speed and increases the activation energy of dissolution,the diffusion process of which is the rate-controlling step.
文摘Electrocatalysis is key to improving energy efficiency,reducing carbon emissions,and providing a sustainable way of meeting global energy needs.Therefore,elucidating electrochemical reaction mechanisms at the electrolyte/electrode interfaces is essential for developing advanced renewable energy technologies.However,the direct probing of real-time interfacial changes,i.e.,the surface intermediates,chemical environment,and electronic structure,under operating conditions is challenging and necessitates the use of in situ methods.Herein,we present a new lab-based instrument commissioned to perform in situ chemical analysis at liquid/solid interfaces using ambient pressure X-ray photoelectron spectroscopy(APXPS).This setup takes advantage of a chromium source of tender X-rays and is designed to study liquid/solid interfaces by the“dip and pull”method.Each of the main components was carefully described,and the results of performance tests are presented.Using a three-electrode setup,the system can probe the intermediate species and potential shifts across the liquid electrolyte/solid electrode interface.In addition,we demonstrate how this system allows the study of interfacial changes at gas/solid interfaces using a case study:a sodium–oxygen model battery.However,the use of APXPS in electrochemical studies is still in the early stages,so we summarize the current challenges and some developmental frontiers.Despite the challenges,we expect that joint efforts to improve instruments and the electrochemical setup will enable us to obtain a better understanding of the composition–reactivity relationship at electrochemical interfaces under realistic reaction conditions.