A multireference configuration interaction (MRCI) study has been carried out on the LiCl molecule. The potential energy has been calculated over a wide range of internuclear separation for the 21 low-lying electroni...A multireference configuration interaction (MRCI) study has been carried out on the LiCl molecule. The potential energy has been calculated over a wide range of internuclear separation for the 21 low-lying electronic states of the LiCl molecule dissociating into Li (^2S, ^2p, ^3S)+Cl (^2p). The (4)^1∑^+, (3)∏, 1-3^3∑^+, 1-3^3∏, 1,3Δ, ^1,3∑^-, (5)^1∑^+,(4)^3∑^+, (4)^3∏, (4)^3∏ excited states are studied for the first time in theory. Molecular spectroscopic constants .(Re, De,ωe, ωeΧe,Be and αe) have been derived for the 9 bound states (X^1∑^+, (3)^1∑^+, (2)^3∑^+, ^1,3Δ, ^1,3∑^-, (4)^∏, (4)^3∏) with a regular shape, and the spectroscopic constants of ground states X^1 ∑^+ are in good agreement with available experimental and theoretical values. The relative differences between experimental values and our values for Re, De, ωe, ωeΧe, Be and α3 are 1.02%, 0.60%, 1.72%, 9.46%, 2.0%, and 0.75%, respectively. Moreover, vibrational levels of 9 bound states, which have not been investigated experimentally, are computed.展开更多
文摘A multireference configuration interaction (MRCI) study has been carried out on the LiCl molecule. The potential energy has been calculated over a wide range of internuclear separation for the 21 low-lying electronic states of the LiCl molecule dissociating into Li (^2S, ^2p, ^3S)+Cl (^2p). The (4)^1∑^+, (3)∏, 1-3^3∑^+, 1-3^3∏, 1,3Δ, ^1,3∑^-, (5)^1∑^+,(4)^3∑^+, (4)^3∏, (4)^3∏ excited states are studied for the first time in theory. Molecular spectroscopic constants .(Re, De,ωe, ωeΧe,Be and αe) have been derived for the 9 bound states (X^1∑^+, (3)^1∑^+, (2)^3∑^+, ^1,3Δ, ^1,3∑^-, (4)^∏, (4)^3∏) with a regular shape, and the spectroscopic constants of ground states X^1 ∑^+ are in good agreement with available experimental and theoretical values. The relative differences between experimental values and our values for Re, De, ωe, ωeΧe, Be and α3 are 1.02%, 0.60%, 1.72%, 9.46%, 2.0%, and 0.75%, respectively. Moreover, vibrational levels of 9 bound states, which have not been investigated experimentally, are computed.