Erlang风险模型广泛应用于排队论、控制论以及金融风险过程。本文在索赔来到(claim-arrival)为Erlang过程,索赔额服从帕雷托分布以及具有常数利息力度的假设下,得到了有限时间内破产概率的渐近表达公式。该结果实质性地推广了Kluppelber...Erlang风险模型广泛应用于排队论、控制论以及金融风险过程。本文在索赔来到(claim-arrival)为Erlang过程,索赔额服从帕雷托分布以及具有常数利息力度的假设下,得到了有限时间内破产概率的渐近表达公式。该结果实质性地推广了Kluppelberg and Stadtmuller[1]和Tang[2]的结果:前者考虑了无穷时间的破产概率,而后者考虑的过程局限为泊松的。由破产模型与排队模型之间的联系可知,本文的结果在管理科学中有许多应用。展开更多
文摘Erlang风险模型广泛应用于排队论、控制论以及金融风险过程。本文在索赔来到(claim-arrival)为Erlang过程,索赔额服从帕雷托分布以及具有常数利息力度的假设下,得到了有限时间内破产概率的渐近表达公式。该结果实质性地推广了Kluppelberg and Stadtmuller[1]和Tang[2]的结果:前者考虑了无穷时间的破产概率,而后者考虑的过程局限为泊松的。由破产模型与排队模型之间的联系可知,本文的结果在管理科学中有许多应用。