Potential energies of LiS(^2∏), LiS-(^1E+) and LiS+ (^3E-) are calculated by using the multi- reference configuration interaction method including Davidson correction and the augmented correlation-consistent ...Potential energies of LiS(^2∏), LiS-(^1E+) and LiS+ (^3E-) are calculated by using the multi- reference configuration interaction method including Davidson correction and the augmented correlation-consistent basis sets aug-cc-PV(X+d)Z (X=T, Q). Such obtained potential energies are subsequently extrapolated to the complete basis set limit. Both the core-valence correction and the relativistic effect are also considered. The analytical potential energy functions are then obtained by fitting such accurate energies utilizing a least-squares fitting procedure. By using such analytical potential energy functions, we obtain the accurate spectroscopic parameters, complete set of vibrational levels and classical turning points. The present results are compared well with the experimental and other theoretical work.展开更多
We performed high-level ab initio calculations on electronic structure of Na K. The potential energy curves (PECs) of 10 Λ-S states correlated with the three lowest dissociation limits have been calculated. On the ba...We performed high-level ab initio calculations on electronic structure of Na K. The potential energy curves (PECs) of 10 Λ-S states correlated with the three lowest dissociation limits have been calculated. On the basis of the calculated PECs, the spectroscopic constants of the boundΛ-S states are obtained, which are in good agreement with experimental results. The maximum vibrational quantum numbers of the singlet ground state X^1Σ^+ and the triplet ground state a^3Σ^+ have been analyzed with the semiclassical scattering theory. Transition properties including transition dipole moments, Franck-Condon factors, and radiative lifetimes have been investigated. The research results indicate that such calculations can provide fairly reliable estimation of parameters for the ultracold alkali diatomic molecular experiment.展开更多
The reaction H+SO_(2)→OH+SO is important in the combustion and atmospheric chemistry,as well as the interstellar medium.It also represents a typical complex-forming reaction with deep complexes,serving as an ideal ca...The reaction H+SO_(2)→OH+SO is important in the combustion and atmospheric chemistry,as well as the interstellar medium.It also represents a typical complex-forming reaction with deep complexes,serving as an ideal candidate for testing various kinetics theories and providing interesting reaction dynamical phenomena.In this work,we reported a quasiclassical trajectory study of this reaction on our previously developed accurate full-dimensional potential energy surface.The experimental thermal rate coefficients over the temperature range 1400 K≤T≤2200 K were well reproduced.For the reactant SO_(2)being sampled at the ground ro-vibrational state,the calculated integral cross sections increased slightly along the collision energy ranging from 31.0 kcal/mol to 40.0 kcal/mol,and then became essentially flat at the collision energy within 40.0−55.0 kcal/mol.The product angular distributions are almost symmetric with nearly identical backward-forward double peak structure.The products OH and SO vibrational state distributions were also analyzed.展开更多
The equilibrium geometries, potential energy curves, spectroscopic dissociation energies of the ground and low-lying electronic states of He2, He2^+ and He2^++ are calculated using symmetry adapted cluster/symmetry...The equilibrium geometries, potential energy curves, spectroscopic dissociation energies of the ground and low-lying electronic states of He2, He2^+ and He2^++ are calculated using symmetry adapted cluster/symmetry adapted cluster-configuration interaction (SAC/SAC-CI) method with the basis sets CC-PV5Z. The corresponding dissociation limits for all states are derived based on atomic and molecular reaction statics. The analytical potential energy functions of these states are fitted with Murrell-Sorbie potential energy function from our calculation results. The spectroscopic constants Be, αe, ωe, and ωeχe of these states are calculated through the relationship between spectroscopic data and analytical energy function, which are in well agreement with the experimental data. In addition, the origin of the energy barrier in the ground state X^I∑9^+ of He2^++ energy curve are explained using the avoided crossing rules of valence bond model.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.11304185), Taishan scholar project of Shandong Province, China Postdoctoral Science Foundation (No.2014M561957), and Post-doctoral Innovation Project of Shandong Province (No.201402013), Shandong Provincial Natural Science Foundation (No.ZR2014AM022). The authors gratefully acknowledge Dr. S. Li for useful discussion in this work.
文摘Potential energies of LiS(^2∏), LiS-(^1E+) and LiS+ (^3E-) are calculated by using the multi- reference configuration interaction method including Davidson correction and the augmented correlation-consistent basis sets aug-cc-PV(X+d)Z (X=T, Q). Such obtained potential energies are subsequently extrapolated to the complete basis set limit. Both the core-valence correction and the relativistic effect are also considered. The analytical potential energy functions are then obtained by fitting such accurate energies utilizing a least-squares fitting procedure. By using such analytical potential energy functions, we obtain the accurate spectroscopic parameters, complete set of vibrational levels and classical turning points. The present results are compared well with the experimental and other theoretical work.
基金supported by the National Key Research and Development Program of China(No.2017YFA0304900,No.2017YFA0402300,and No.2016YFA0300600)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB28000000 and No.XDB07030000)+2 种基金the National Natural Science Foundation of China(No.11604334,No.11575099 and No.11474347)the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(No.KF201807)the Science Challenge Project(No.TZ2016005)
文摘We performed high-level ab initio calculations on electronic structure of Na K. The potential energy curves (PECs) of 10 Λ-S states correlated with the three lowest dissociation limits have been calculated. On the basis of the calculated PECs, the spectroscopic constants of the boundΛ-S states are obtained, which are in good agreement with experimental results. The maximum vibrational quantum numbers of the singlet ground state X^1Σ^+ and the triplet ground state a^3Σ^+ have been analyzed with the semiclassical scattering theory. Transition properties including transition dipole moments, Franck-Condon factors, and radiative lifetimes have been investigated. The research results indicate that such calculations can provide fairly reliable estimation of parameters for the ultracold alkali diatomic molecular experiment.
基金supported by the National Natural Science Foundation of China(No.21973009)Chongqing Municipal Natural Science Foundation(No.cstc2019jcyj-msxm X0087)。
文摘The reaction H+SO_(2)→OH+SO is important in the combustion and atmospheric chemistry,as well as the interstellar medium.It also represents a typical complex-forming reaction with deep complexes,serving as an ideal candidate for testing various kinetics theories and providing interesting reaction dynamical phenomena.In this work,we reported a quasiclassical trajectory study of this reaction on our previously developed accurate full-dimensional potential energy surface.The experimental thermal rate coefficients over the temperature range 1400 K≤T≤2200 K were well reproduced.For the reactant SO_(2)being sampled at the ground ro-vibrational state,the calculated integral cross sections increased slightly along the collision energy ranging from 31.0 kcal/mol to 40.0 kcal/mol,and then became essentially flat at the collision energy within 40.0−55.0 kcal/mol.The product angular distributions are almost symmetric with nearly identical backward-forward double peak structure.The products OH and SO vibrational state distributions were also analyzed.
基金Supported by the Natural Science Foundation of Shaanxi Province of China under Grant No. 2009JM1007
文摘The equilibrium geometries, potential energy curves, spectroscopic dissociation energies of the ground and low-lying electronic states of He2, He2^+ and He2^++ are calculated using symmetry adapted cluster/symmetry adapted cluster-configuration interaction (SAC/SAC-CI) method with the basis sets CC-PV5Z. The corresponding dissociation limits for all states are derived based on atomic and molecular reaction statics. The analytical potential energy functions of these states are fitted with Murrell-Sorbie potential energy function from our calculation results. The spectroscopic constants Be, αe, ωe, and ωeχe of these states are calculated through the relationship between spectroscopic data and analytical energy function, which are in well agreement with the experimental data. In addition, the origin of the energy barrier in the ground state X^I∑9^+ of He2^++ energy curve are explained using the avoided crossing rules of valence bond model.