The National Centers for Environmental Prediction (NCEP) reanalysis data, Climate Diagnostics Center Merged Analysis of Precipitation (CMAP) results, and NOAA Extended Reconstructed Sea Surface Temperature (SST), have...The National Centers for Environmental Prediction (NCEP) reanalysis data, Climate Diagnostics Center Merged Analysis of Precipitation (CMAP) results, and NOAA Extended Reconstructed Sea Surface Temperature (SST), have been utilized in this paper to study the quasi-biennial variations in Asia-Pacific monsoon subsystems and associated SST anomalies (SSTA) and wind anomalies. Four monsoon indices are computed from NCEP/ National Center for Atmospheric Research (NCAR) reanalysis to represent the South Asian monsoon (SAM), South China Sea summer monsoon (SCSSM), Western North Pacific monsoon (WNPM) and East Asian monsoon (EAM), respectively. The quasi-biennial periods are very significant in Asia-Pacific monsoons (as discovered by power spectrum analysis), and for SAM and EAM---with moderate effects by El Ni?o-Southern Oscillation (ENSO)---the quasi-biennial periods are the most important factor. For SCSSM and WNPM (once again due to the effects of ENSO), the quasi-biennial periods are of secondary durations. There are obvious interdecadal variations in the quasi-biennial modes of the Asia-Pacific monsoon, so in the negative phase the biennial modes will not be significant or outstanding. The wind anomalies and SSTA associated with the biennial modes are very different in the SAM, WNPM and EAM regions. Since the WNPM and SCSSM are very similar in the biennial modes, they can be combined into one subsystem, called SCS/WNPM.展开更多
A dipole pattern of summer precipitation over the mid-high latitudes of Asia, which is characterized by opposing summer precipitation variations between the Mongolian and Northeast China(MNC) region and the West Siber...A dipole pattern of summer precipitation over the mid-high latitudes of Asia, which is characterized by opposing summer precipitation variations between the Mongolian and Northeast China(MNC) region and the West Siberian Plain(WSP), is found to be clear and stable on both interdecadal and interannual scales during 1981–2011. Spring snow cover anomalies over a small region within the WSP and the Heilongjiang River(HR) region are closely related to the variation of this dipole mode during the subsequent summer, and they can therefore be considered as forecasting factors. Our statistical results imply a potential process explaining the relationship between the spring snow anomalies and the summer rainfall dipole. Corresponding to the snow anomalies, Rossby waves propagate along a path from the WSP region, via the Mongolian Plateau, to the Stanovoy Range during summer. At the same time, Rossby-wave energy divergences and convergences along this path maintain and reinforce an anomalous cyclone and anticyclone pairing over the Asian continent, which is significantly linked to opposite summer precipitation anomalies between the MNC and WSP regions. Numerical experiments are needed to further confirm the above conjecture and demonstrate the detailed physical mechanisms linking the spring snow cover anomalies and summer precipitation dipole.展开更多
This study utilizes daily Asian Precipitation–Highly-Resolved Observational Data Integration Towards Evaluation(APHRODITE)gridded rainfall and the U.S.National Centers for Environmental PredictionDepartment of Ener...This study utilizes daily Asian Precipitation–Highly-Resolved Observational Data Integration Towards Evaluation(APHRODITE)gridded rainfall and the U.S.National Centers for Environmental PredictionDepartment of Energy reanalysis II products to examine the intraseasonal oscillations(ISOs)of rainfall over Eastern China during each summer of 1996,2002,and 2006.These three cases represent three typical spatial patterns of intraseasonal rainfall anomalies over Eastern China,with the strongest intraseasonal rainfall occurring over the middle and lower Yangtze Basin,southern Yangtze Basin,and Southeast China,respectively.The intraseasonal rainfall anomalies over Eastern China are dominated by both 30–60-and 10–20-day ISOs in each summer and are further modulated by the boreal summer ISOs(BSISOs)over the entire Asian summer monsoon region.The objective of this study is thus to apply the Bayesian wavelet-banding(WB)scheme to predicting intraseasonal rainfall over Eastern China.Several key factors associated with BSISOs are selected as predictors to experimentally develop a 15-day-lead statistical forecast.The forecast results show promise for the intraseasonal rainfall anomalies over Eastern China.Correlations generally greater than or equal to 0.6 are noted between the observed and predicted ISOs of rainfall over the major intraseasonal activity centers during each of the three summers.Such a high forecasting skill on intraseasonal timescales over various areas in Eastern China demonstrates the general usefulness of the WB scheme.展开更多
Documented materials, especially those about flooding catastrophe, are abundant comprehensive and well-preserved, which makes possible the systematical collection of materials about historical document about climate e...Documented materials, especially those about flooding catastrophe, are abundant comprehensive and well-preserved, which makes possible the systematical collection of materials about historical document about climate evolution in Changjiang (Yangtze) Delta region and its neighboring areas. We make good use of the exceptional information to discuss the genesis and principle of flooding in this region. Analysis shows that the main flooding periods in the studied region in the last 2000 years were the Western Jin Dynasty, Eastern Jin Dynasty, Northern and Southern Dynasties, Southern Song Dynasty, Yuan Dynasty, Ming Dynasty and Qing Dynasty. The periods with flooding peak values were the 4th century, 5th century, 7th century, 9th century, early 12th century, early 14th century, mid-15th century, and early 18th century A.D. Possibility of reappearance of flooding peak value in the early 21st century will be great, and the hazard prevention and the hazard reduction will be still hard.展开更多
The impact on temperature and precipitation anomalies over the European continent of the different action centers of blocking events in the Euro-Atlantic sector was investigated. It was found that the position of the ...The impact on temperature and precipitation anomalies over the European continent of the different action centers of blocking events in the Euro-Atlantic sector was investigated. It was found that the position of the blocking action center in the Euro-Atlantic region seems to dominate European climates. When the center of the blocking action is in the Greenland region, there is a strong negative temperature anomaly over Central and Northern Europe, as well as a strong positive precipitation anomaly over southern Europe. However, there tends to be a strong negative temperature anomaly in the west(east) part of Europe when the center of the blocking action is shifted to the Eastern Atlantic and west Europe(east Europe). In particular, when the blocking action center is closer to the European continent, the fall in temperature becomes more evident over Central and south Europe than over other regions. Moreover, it was found that when the region where the blocking action center exists changes from the Eastern Atlantic and west Europe region to the east Europe region, the existing region of dominant positive precipitation anomalies varies from southwest Europe to southeast Europe and the Middle East.展开更多
基金National Natural Science Foundation of China (40505019)
文摘The National Centers for Environmental Prediction (NCEP) reanalysis data, Climate Diagnostics Center Merged Analysis of Precipitation (CMAP) results, and NOAA Extended Reconstructed Sea Surface Temperature (SST), have been utilized in this paper to study the quasi-biennial variations in Asia-Pacific monsoon subsystems and associated SST anomalies (SSTA) and wind anomalies. Four monsoon indices are computed from NCEP/ National Center for Atmospheric Research (NCAR) reanalysis to represent the South Asian monsoon (SAM), South China Sea summer monsoon (SCSSM), Western North Pacific monsoon (WNPM) and East Asian monsoon (EAM), respectively. The quasi-biennial periods are very significant in Asia-Pacific monsoons (as discovered by power spectrum analysis), and for SAM and EAM---with moderate effects by El Ni?o-Southern Oscillation (ENSO)---the quasi-biennial periods are the most important factor. For SCSSM and WNPM (once again due to the effects of ENSO), the quasi-biennial periods are of secondary durations. There are obvious interdecadal variations in the quasi-biennial modes of the Asia-Pacific monsoon, so in the negative phase the biennial modes will not be significant or outstanding. The wind anomalies and SSTA associated with the biennial modes are very different in the SAM, WNPM and EAM regions. Since the WNPM and SCSSM are very similar in the biennial modes, they can be combined into one subsystem, called SCS/WNPM.
基金the joint support of the National Natural Science Foundation of China (Grant No. 41375090)the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Grant No. 2013Z002)the International Cooperation and Exchange of the Ministry of Science and Technology of China (Grant No. 2009DFA21430)
文摘A dipole pattern of summer precipitation over the mid-high latitudes of Asia, which is characterized by opposing summer precipitation variations between the Mongolian and Northeast China(MNC) region and the West Siberian Plain(WSP), is found to be clear and stable on both interdecadal and interannual scales during 1981–2011. Spring snow cover anomalies over a small region within the WSP and the Heilongjiang River(HR) region are closely related to the variation of this dipole mode during the subsequent summer, and they can therefore be considered as forecasting factors. Our statistical results imply a potential process explaining the relationship between the spring snow anomalies and the summer rainfall dipole. Corresponding to the snow anomalies, Rossby waves propagate along a path from the WSP region, via the Mongolian Plateau, to the Stanovoy Range during summer. At the same time, Rossby-wave energy divergences and convergences along this path maintain and reinforce an anomalous cyclone and anticyclone pairing over the Asian continent, which is significantly linked to opposite summer precipitation anomalies between the MNC and WSP regions. Numerical experiments are needed to further confirm the above conjecture and demonstrate the detailed physical mechanisms linking the spring snow cover anomalies and summer precipitation dipole.
基金jointly supported by the National Basic Research Program of China[grant numbers 2014CB953902,2012CB417203,and 2012CB955202]the Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010402]+2 种基金the National Natural Science Foundation of China[grant numbers 4117505941375087and 91537103]
文摘This study utilizes daily Asian Precipitation–Highly-Resolved Observational Data Integration Towards Evaluation(APHRODITE)gridded rainfall and the U.S.National Centers for Environmental PredictionDepartment of Energy reanalysis II products to examine the intraseasonal oscillations(ISOs)of rainfall over Eastern China during each summer of 1996,2002,and 2006.These three cases represent three typical spatial patterns of intraseasonal rainfall anomalies over Eastern China,with the strongest intraseasonal rainfall occurring over the middle and lower Yangtze Basin,southern Yangtze Basin,and Southeast China,respectively.The intraseasonal rainfall anomalies over Eastern China are dominated by both 30–60-and 10–20-day ISOs in each summer and are further modulated by the boreal summer ISOs(BSISOs)over the entire Asian summer monsoon region.The objective of this study is thus to apply the Bayesian wavelet-banding(WB)scheme to predicting intraseasonal rainfall over Eastern China.Several key factors associated with BSISOs are selected as predictors to experimentally develop a 15-day-lead statistical forecast.The forecast results show promise for the intraseasonal rainfall anomalies over Eastern China.Correlations generally greater than or equal to 0.6 are noted between the observed and predicted ISOs of rainfall over the major intraseasonal activity centers during each of the three summers.Such a high forecasting skill on intraseasonal timescales over various areas in Eastern China demonstrates the general usefulness of the WB scheme.
基金Under the auspices of the National Natural Science Foundation of China (No.40071083),"985 Project"for discipline construction
文摘Documented materials, especially those about flooding catastrophe, are abundant comprehensive and well-preserved, which makes possible the systematical collection of materials about historical document about climate evolution in Changjiang (Yangtze) Delta region and its neighboring areas. We make good use of the exceptional information to discuss the genesis and principle of flooding in this region. Analysis shows that the main flooding periods in the studied region in the last 2000 years were the Western Jin Dynasty, Eastern Jin Dynasty, Northern and Southern Dynasties, Southern Song Dynasty, Yuan Dynasty, Ming Dynasty and Qing Dynasty. The periods with flooding peak values were the 4th century, 5th century, 7th century, 9th century, early 12th century, early 14th century, mid-15th century, and early 18th century A.D. Possibility of reappearance of flooding peak value in the early 21st century will be great, and the hazard prevention and the hazard reduction will be still hard.
基金supported by the National Natural Science Foundation of China (Grant No. 41375067)
文摘The impact on temperature and precipitation anomalies over the European continent of the different action centers of blocking events in the Euro-Atlantic sector was investigated. It was found that the position of the blocking action center in the Euro-Atlantic region seems to dominate European climates. When the center of the blocking action is in the Greenland region, there is a strong negative temperature anomaly over Central and Northern Europe, as well as a strong positive precipitation anomaly over southern Europe. However, there tends to be a strong negative temperature anomaly in the west(east) part of Europe when the center of the blocking action is shifted to the Eastern Atlantic and west Europe(east Europe). In particular, when the blocking action center is closer to the European continent, the fall in temperature becomes more evident over Central and south Europe than over other regions. Moreover, it was found that when the region where the blocking action center exists changes from the Eastern Atlantic and west Europe region to the east Europe region, the existing region of dominant positive precipitation anomalies varies from southwest Europe to southeast Europe and the Middle East.