Generalized Steiner triple systems, GS(2, 3, n, g) are equivalent to (g+1)-ary maximum constant weight codes (n, 3,3)s. In this paper, it is proved that the necessary conditions for the existence of a GS(2,3, n, 10), ...Generalized Steiner triple systems, GS(2, 3, n, g) are equivalent to (g+1)-ary maximum constant weight codes (n, 3,3)s. In this paper, it is proved that the necessary conditions for the existence of a GS(2,3, n, 10), namely, n ≡ 0,1 (mod 3) and n ≥ 12, are also sufficient.展开更多
基金Supported by YNSFC(10001026)for the first authorby Tianyuan Mathematics Foundation of NNSFCGuangxi Science Foundation and Guangxi Education Committee for the second author.
文摘Generalized Steiner triple systems, GS(2, 3, n, g) are equivalent to (g+1)-ary maximum constant weight codes (n, 3,3)s. In this paper, it is proved that the necessary conditions for the existence of a GS(2,3, n, 10), namely, n ≡ 0,1 (mod 3) and n ≥ 12, are also sufficient.