期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
幂变换门限GARCH模型变点问题的贝叶斯分析
1
作者 刘欢 何幼桦 《应用数学与计算数学学报》 2018年第4期841-851,共11页
用贝叶斯方法对幂变换门限GARCH (PTTGARCH)模型变点问题进行统计分析.构造了变点模型参数的满条件分布并且采用MCMC的Griddy-Gibbs抽样算法对参数进行了估计.分别就不同的变点位置、模型不存在变点以及模型接近非平稳的情况进行数值模... 用贝叶斯方法对幂变换门限GARCH (PTTGARCH)模型变点问题进行统计分析.构造了变点模型参数的满条件分布并且采用MCMC的Griddy-Gibbs抽样算法对参数进行了估计.分别就不同的变点位置、模型不存在变点以及模型接近非平稳的情况进行数值模拟.结果表明:变点处于序列中间位置时,估计效果较好,当变点位置越靠近序列两端时,所得估计的误差越大;当模型不存在变点时,所设变点位置τ后验分布的峰度接近均匀分布的峰度;当模型存在变点时,τ后验分布的峰度大于2,且模型越平稳,τ的后验分布的峰度越大,因此可以通过判断τ的后验分布的峰度来判断模型是否存在变点.最后以GARCH模型对上证指数日收益率进行分析,得到变点发生时刻的概率分布,该结果与市场的变化背景符合. 展开更多
关键词 贝叶斯估计 幂变换门限garch模型 变点 Griddy-Gibbs抽样 MCMC
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部