研究了复合泛函方程T(T(x)-T(y))=T(x+y)+T(x-y)-T(x)-T(y)在泛函Φ(x,y)限制下的稳定性问题.证明了:若E为Banach空间,泛函Φ:E×E→[0,∞)连续使得级数Φ(x)d=sum (2-j-1Φ(2jx,2jx)) from j=1 to ∞在E的任一有界子集上一致收敛,...研究了复合泛函方程T(T(x)-T(y))=T(x+y)+T(x-y)-T(x)-T(y)在泛函Φ(x,y)限制下的稳定性问题.证明了:若E为Banach空间,泛函Φ:E×E→[0,∞)连续使得级数Φ(x)d=sum (2-j-1Φ(2jx,2jx)) from j=1 to ∞在E的任一有界子集上一致收敛,F:E→E是连续映射且满足‖F(F(x)-F(y))-F(x+y)-F(x-y)+F(x)+F(y)‖≤Φ(x,y)(■x、y∈E),则存在唯一的连续2-齐次映射T:E→E满足以上复合泛函方程且‖T(x)-F(x)‖≤Φ(x),■x∈E.展开更多
文摘研究了复合泛函方程T(T(x)-T(y))=T(x+y)+T(x-y)-T(x)-T(y)在泛函Φ(x,y)限制下的稳定性问题.证明了:若E为Banach空间,泛函Φ:E×E→[0,∞)连续使得级数Φ(x)d=sum (2-j-1Φ(2jx,2jx)) from j=1 to ∞在E的任一有界子集上一致收敛,F:E→E是连续映射且满足‖F(F(x)-F(y))-F(x+y)-F(x-y)+F(x)+F(y)‖≤Φ(x,y)(■x、y∈E),则存在唯一的连续2-齐次映射T:E→E满足以上复合泛函方程且‖T(x)-F(x)‖≤Φ(x),■x∈E.