期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Banach空间中的幂级数方程
1
作者 胡适耕 洪世煌 《华中理工大学学报》 CSCD 北大核心 1992年第3期157-162,共6页
本文考虑Banach空间中形如x=u+sum from k=1 to ∞(a_kx^k)的幂级数方程,建立了一个比较定理,并将其应用于一定的非线性积分方程.
关键词 幂级数方程 压缩映射 BANACH空间
下载PDF
解析函数泰勒展开的一种新方法 被引量:1
2
作者 刘灯明 《长春师范大学学报》 2016年第4期4-7,共4页
解析函数的泰勒展开是复变函数论中的一个重要内容,利用线性常微分方程的幂级数解,可以简洁地求得一些复杂解析函数的泰勒展式。
关键词 解析函数 泰勒展开 常微分方程幂级数
下载PDF
Lie Symmetry Analysis, Conservation Laws and Exact Power Series Solutions for Time-Fractional Fordy–Gibbons Equation 被引量:2
3
作者 冯连莉 田守富 +1 位作者 王秀彬 张田田 《Communications in Theoretical Physics》 SCIE CAS CSCD 2016年第9期321-329,共9页
In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–K... In this paper, the time fractional Fordy–Gibbons equation is investigated with Riemann–Liouville derivative. The equation can be reduced to the Caudrey–Dodd–Gibbon equation, Savada–Kotera equation and the Kaup–Kupershmidt equation, etc. By means of the Lie group analysis method, the invariance properties and symmetry reductions of the equation are derived. Furthermore, by means of the power series theory, its exact power series solutions of the equation are also constructed. Finally, two kinds of conservation laws of the equation are well obtained with aid of the self-adjoint method. 展开更多
关键词 time-fractional Fordy-Gibbons equation Lie symmetry method symmetry reduction exact solution conservation laws
原文传递
Fractional Bateman–Feshbach Tikochinsky Oscillator
4
作者 Dumitru Baleanu Jihad H.Asad Ivo Petras 《Communications in Theoretical Physics》 SCIE CAS CSCD 2014年第2期221-225,共5页
In the last few years the numerical methods for solving the fractional differential equations started to be applied intensively to real world phenomena. Having these things in mind in this manuscript we focus on the f... In the last few years the numerical methods for solving the fractional differential equations started to be applied intensively to real world phenomena. Having these things in mind in this manuscript we focus on the fractional Lagrangian and Harniltonian of the complex Bateman-Feshbach Tikochinsky oscillator. The numerical analysis of the corresponding fractionaJ Euler-Lagrange equations is given within the Griinwald-Letnikov approach, which is power series expansion of the generating function. 展开更多
关键词 Riemann-Liouville derivatives Bateman-Feshbach Tikochinsky oscillator fractional Hamiltonianequations Griinwald-Letnikov approach
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部