Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,su...Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,such as the triple decomposition of motion(TDM)and normal-nilpotent decomposition(NND),have been proposed to analyze the local motions of fluid elements.However,due to the existence of different types and non-uniqueness of Schur forms,as well as various possible definitions of NNDs,confusion has spread widely and is harming the research.This work aims to clean up this confusion.To this end,the complex and real Schur forms are derived constructively from the very basics,with special consideration for their non-uniqueness.Conditions of uniqueness are proposed.After a general discussion of normality and nilpotency,a complex NND and several real NNDs as well as normal-nonnormal decompositions are constructed,with a brief comparison of complex and real decompositions.Based on that,several confusing points are clarified,such as the distinction between NND and TDM,and the intrinsic gap between complex and real NNDs.Besides,the author proposes to extend the real block Schur form and its corresponding NNDs for the complex eigenvalue case to the real eigenvalue case.But their justification is left to further investigations.展开更多
In this paper, we mainly concerned about the nilpotence of Lie triple algebras.We give the definition of nilpotence of the Lie triple algebra and obtained that if Lie triplealgebra is nilpotent, then its standard enve...In this paper, we mainly concerned about the nilpotence of Lie triple algebras.We give the definition of nilpotence of the Lie triple algebra and obtained that if Lie triplealgebra is nilpotent, then its standard enveloping Lie algebra is nilpotent.展开更多
By using pronormal minimal subgroups and weak left Engel elements ofprime order of the normalizers of Sylow subgroups of a finite group G, we obtain somesufficient conditions for G to be p-nilpotent, nilpotent and sup...By using pronormal minimal subgroups and weak left Engel elements ofprime order of the normalizers of Sylow subgroups of a finite group G, we obtain somesufficient conditions for G to be p-nilpotent, nilpotent and supersolvable respectively,which generalize some known results.展开更多
The authors first give a necessary and sufficient condition for some solvable Lie algebras with l-step nilpotent radicals to be complete, and then construct a new class of infinite dimensional complete Lie algebras by...The authors first give a necessary and sufficient condition for some solvable Lie algebras with l-step nilpotent radicals to be complete, and then construct a new class of infinite dimensional complete Lie algebras by using the modules of simple Lie algebras. The quotient algebras of this new constructed Lie algebras are non-solvable complete Lie algebras with l-step nilpotent radicals.展开更多
We introduce and study the minimal inner-Σ-Ω-groups and the minimal outer-Σ-■-groups.Then we give some applications and obtain some interesting results,including characterizations of nilpotent,supersolvable,solvab...We introduce and study the minimal inner-Σ-Ω-groups and the minimal outer-Σ-■-groups.Then we give some applications and obtain some interesting results,including characterizations of nilpotent,supersolvable,solvable,and p-closed groups in terms of the join of two conjugate cyclic subgroups having the same property.展开更多
Let m, n 〉 1 be two coprime integers. In this paper, we prove that a finite solvable group is nilpotent if the set of the conjugacy class sizes of its primary and biprimary elements is {1, rn, n, mn}.
文摘Real and complex Schur forms have been receiving increasing attention from the fluid mechanics community recently,especially related to vortices and turbulence.Several decompositions of the velocity gradient tensor,such as the triple decomposition of motion(TDM)and normal-nilpotent decomposition(NND),have been proposed to analyze the local motions of fluid elements.However,due to the existence of different types and non-uniqueness of Schur forms,as well as various possible definitions of NNDs,confusion has spread widely and is harming the research.This work aims to clean up this confusion.To this end,the complex and real Schur forms are derived constructively from the very basics,with special consideration for their non-uniqueness.Conditions of uniqueness are proposed.After a general discussion of normality and nilpotency,a complex NND and several real NNDs as well as normal-nonnormal decompositions are constructed,with a brief comparison of complex and real decompositions.Based on that,several confusing points are clarified,such as the distinction between NND and TDM,and the intrinsic gap between complex and real NNDs.Besides,the author proposes to extend the real block Schur form and its corresponding NNDs for the complex eigenvalue case to the real eigenvalue case.But their justification is left to further investigations.
基金Supported by NKBRPC(2004CB31800)Supported by NNSFC(10375087)
文摘In this paper, we mainly concerned about the nilpotence of Lie triple algebras.We give the definition of nilpotence of the Lie triple algebra and obtained that if Lie triplealgebra is nilpotent, then its standard enveloping Lie algebra is nilpotent.
文摘By using pronormal minimal subgroups and weak left Engel elements ofprime order of the normalizers of Sylow subgroups of a finite group G, we obtain somesufficient conditions for G to be p-nilpotent, nilpotent and supersolvable respectively,which generalize some known results.
基金Project supported by the the National Natural Science Foundation of China (No. 19971044) the Doctoral Program Foundation of the Ministry of Education of China (No. 97005511).
文摘The authors first give a necessary and sufficient condition for some solvable Lie algebras with l-step nilpotent radicals to be complete, and then construct a new class of infinite dimensional complete Lie algebras by using the modules of simple Lie algebras. The quotient algebras of this new constructed Lie algebras are non-solvable complete Lie algebras with l-step nilpotent radicals.
基金supported by National Natural Science Foundation of China (Grant No.10871032)the Natural Science Foundation of Jiangsu Province (Grant No. BK2008156)
文摘We introduce and study the minimal inner-Σ-Ω-groups and the minimal outer-Σ-■-groups.Then we give some applications and obtain some interesting results,including characterizations of nilpotent,supersolvable,solvable,and p-closed groups in terms of the join of two conjugate cyclic subgroups having the same property.
基金supported by National Natural Science Foundation of China(Grant Nos.11201401 and 11101258)National Science Foundation for Postdoctoral Scientists of China(Grant No.20100480582)University of Jinan Research Funds for Doctors(Grant Nos.XBS1335 and XBS1336)
文摘Let m, n 〉 1 be two coprime integers. In this paper, we prove that a finite solvable group is nilpotent if the set of the conjugacy class sizes of its primary and biprimary elements is {1, rn, n, mn}.