The boundary identification and quantitative thickness prediction of channel sand bodies are always difficult in seismic exploration.We present a new method for boundary identification and quantitative thickness predi...The boundary identification and quantitative thickness prediction of channel sand bodies are always difficult in seismic exploration.We present a new method for boundary identification and quantitative thickness prediction of channel sand bodies based on seismic peak attributes in the frequency domain.Using seismic forward modeling of a typical thin channel sand body,a new seismic attribute-the ratio of peak frequency to amplitude was constructed.Theoretical study demonstrated that seismic peak frequency is sensitive to the thickness of the channel sand bodies,while the amplitude attribute is sensitive to the strata lithology.The ratio of the two attributes can highlight the boundaries of the channel sand body.Moreover,the thickness of the thin channel sand bodies can be determined using the relationship between seismic peak frequency and thin layer thickness.Practical applications have demonstrated that the seismic peak frequency attribute can depict the horizontal distribution characteristics of channels very well.The ratio of peak frequency to amplitude attribute can improve the identification ability of channel sand body boundaries.Quantitative prediction and boundary identification of channel sand bodies with seismic peak attributes in the frequency domain are feasible.展开更多
Amplitude quantization is one of the main sources of spurious noise frequencies in Direct Digital Frequency Synthesizers (DDFSs), which affect their application to many wireless telecommu- nication systems. In this pa...Amplitude quantization is one of the main sources of spurious noise frequencies in Direct Digital Frequency Synthesizers (DDFSs), which affect their application to many wireless telecommu- nication systems. In this paper, two different kinds of spurious signals due to amplitude quantization in DDFSs are exactly formulated in the time domain and detailedly compared in the frequency do- main, and the effects of the DDFS parameter variations on the spurious performance are thoroughly studied. Then the spectral properties and power levels of the amplitude-quantization spurs in the absence of phase-accumulator truncation are emphatically analyzed by waveform estimation and computer simulation, and several important conclusions are derived which can provide theoretical support for parameter choice and spurious performance evaluation in the application of DDFSs.展开更多
基金supported by National Key Science and Technology Special Projects (Grant No.2008ZX05000-004)CNPC Key S and T Special Projects (Grant No.2008E-0610-10)
文摘The boundary identification and quantitative thickness prediction of channel sand bodies are always difficult in seismic exploration.We present a new method for boundary identification and quantitative thickness prediction of channel sand bodies based on seismic peak attributes in the frequency domain.Using seismic forward modeling of a typical thin channel sand body,a new seismic attribute-the ratio of peak frequency to amplitude was constructed.Theoretical study demonstrated that seismic peak frequency is sensitive to the thickness of the channel sand bodies,while the amplitude attribute is sensitive to the strata lithology.The ratio of the two attributes can highlight the boundaries of the channel sand body.Moreover,the thickness of the thin channel sand bodies can be determined using the relationship between seismic peak frequency and thin layer thickness.Practical applications have demonstrated that the seismic peak frequency attribute can depict the horizontal distribution characteristics of channels very well.The ratio of peak frequency to amplitude attribute can improve the identification ability of channel sand body boundaries.Quantitative prediction and boundary identification of channel sand bodies with seismic peak attributes in the frequency domain are feasible.
基金Supported by National High-Technology Research and Development Plan of China (Grant No.2006AA01Z452)
文摘Amplitude quantization is one of the main sources of spurious noise frequencies in Direct Digital Frequency Synthesizers (DDFSs), which affect their application to many wireless telecommu- nication systems. In this paper, two different kinds of spurious signals due to amplitude quantization in DDFSs are exactly formulated in the time domain and detailedly compared in the frequency do- main, and the effects of the DDFS parameter variations on the spurious performance are thoroughly studied. Then the spectral properties and power levels of the amplitude-quantization spurs in the absence of phase-accumulator truncation are emphatically analyzed by waveform estimation and computer simulation, and several important conclusions are derived which can provide theoretical support for parameter choice and spurious performance evaluation in the application of DDFSs.