Considering magneto-electro-elastic thin plate, the von Karman plate theory of large deflection and the geometric nonlinearity, the mathematical model of nonlinear undamped forced vibration is established. Making use ...Considering magneto-electro-elastic thin plate, the von Karman plate theory of large deflection and the geometric nonlinearity, the mathematical model of nonlinear undamped forced vibration is established. Making use of the improved Lindstedt-Poincare (L-P) method, the undamped forced vibration problem is solved, and the amplitude-frequency response equation of thin plate is obtained. Furthermore, the amplitude frequency response curves of system under different condi- tions are obtained by numerical simulation. The results show that the thickness of the plate, mechanical excitation, parame- ter e, pure piezoelectric material of BaTiO3, pure piezomagnetic material of CoFe2 04, different magneto-electro-elastic ma- terials of BaTiO3/CoFe2 04 and Terfenol-D/PZT will have an impact on the system frequency response. The main effects in- volve principal resonance interval, spring stiffness characteristic and amplitude jumping phenomena.展开更多
基金National Natural Science Foundation of China(No.11202190)Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars,Ministry of Education,ChinaResearch Project Supported by Shanxi Scholarship Council of China(No.2013-085)
文摘Considering magneto-electro-elastic thin plate, the von Karman plate theory of large deflection and the geometric nonlinearity, the mathematical model of nonlinear undamped forced vibration is established. Making use of the improved Lindstedt-Poincare (L-P) method, the undamped forced vibration problem is solved, and the amplitude-frequency response equation of thin plate is obtained. Furthermore, the amplitude frequency response curves of system under different condi- tions are obtained by numerical simulation. The results show that the thickness of the plate, mechanical excitation, parame- ter e, pure piezoelectric material of BaTiO3, pure piezomagnetic material of CoFe2 04, different magneto-electro-elastic ma- terials of BaTiO3/CoFe2 04 and Terfenol-D/PZT will have an impact on the system frequency response. The main effects in- volve principal resonance interval, spring stiffness characteristic and amplitude jumping phenomena.