The study evaluated the feasibility of using microwave enhanced hot air heating system for simultaneous dry blanching and dehydration of mushroom slices. The technology involves application of microwave energy at the ...The study evaluated the feasibility of using microwave enhanced hot air heating system for simultaneous dry blanching and dehydration of mushroom slices. The technology involves application of microwave energy at the beginning of dehydration process to inactivate enzymes as well as to remove a certain amount of moisture at the same time and then followed by hot air drying to complete the process. The study investigated effects of different processing parameters, i.e., microwave power level and exposure time on dehydration and quality characteristics of mushroom slices. Mushroom slices were pretreated with different microwave power levels of 240, 360 and 480 W for 1, 3 and 5 min before the hot air-drying. The optimum range of the microwave power level and pretreatment time was found to be 360 W, 3 min and 360 W, 1 min in obtaining the maximum and minimum levels of response parameters.展开更多
The effect of varied processing variables (yam slice thickness, drying temperatures and type of drying) were investigated to determine their effects on the proximate and some functional properties of yam flour. The ...The effect of varied processing variables (yam slice thickness, drying temperatures and type of drying) were investigated to determine their effects on the proximate and some functional properties of yam flour. The yam flour was produced with different slice thickness of 1, 1.5, 2.0, 2.5 and 5 cm using both conventional sun drying method and oven drying at temperatures; 40 ~C, 50 ~C, 60 ~C and 70 ~C. The moisture content of all the yam flour samples increased with increasing yam slice thickness, with the samples sun dried having the lowest values (6.20%-6.87%) followed by those dried at 70 ~C and then 60 ~C. The protein content of the yam flour samples increased with increase in slice thickness and decreased with increase in drying temperatures while the fat and the crude fibre of all the yam flour samples decreased with increase in slice thickness. The water absorption capacity of the sun dried yam flour samples decreased with increase in slice thickness while the syneresis value, bulk density and the gel strength increased with increase in slice thickness for all drying temperatures and for sun dried yam flour samples but smaller slice thickness had higher swelling capacity.展开更多
文摘The study evaluated the feasibility of using microwave enhanced hot air heating system for simultaneous dry blanching and dehydration of mushroom slices. The technology involves application of microwave energy at the beginning of dehydration process to inactivate enzymes as well as to remove a certain amount of moisture at the same time and then followed by hot air drying to complete the process. The study investigated effects of different processing parameters, i.e., microwave power level and exposure time on dehydration and quality characteristics of mushroom slices. Mushroom slices were pretreated with different microwave power levels of 240, 360 and 480 W for 1, 3 and 5 min before the hot air-drying. The optimum range of the microwave power level and pretreatment time was found to be 360 W, 3 min and 360 W, 1 min in obtaining the maximum and minimum levels of response parameters.
文摘The effect of varied processing variables (yam slice thickness, drying temperatures and type of drying) were investigated to determine their effects on the proximate and some functional properties of yam flour. The yam flour was produced with different slice thickness of 1, 1.5, 2.0, 2.5 and 5 cm using both conventional sun drying method and oven drying at temperatures; 40 ~C, 50 ~C, 60 ~C and 70 ~C. The moisture content of all the yam flour samples increased with increasing yam slice thickness, with the samples sun dried having the lowest values (6.20%-6.87%) followed by those dried at 70 ~C and then 60 ~C. The protein content of the yam flour samples increased with increase in slice thickness and decreased with increase in drying temperatures while the fat and the crude fibre of all the yam flour samples decreased with increase in slice thickness. The water absorption capacity of the sun dried yam flour samples decreased with increase in slice thickness while the syneresis value, bulk density and the gel strength increased with increase in slice thickness for all drying temperatures and for sun dried yam flour samples but smaller slice thickness had higher swelling capacity.