The effect of grain refiner, Mn and Sn additions on the sliding wear behavior of A356 aluminum alloys was investigated. The microstructure and worn surfaces of the studied alloys were characterized by optical microsc...The effect of grain refiner, Mn and Sn additions on the sliding wear behavior of A356 aluminum alloys was investigated. The microstructure and worn surfaces of the studied alloys were characterized by optical microscopy(OM), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). The experimental results indicate that the alloy refined by Al-5Ti-B alloy exhibits equiaxed α(Al) dendrites and performs better wear resistance compared with the alloy without the grain refiner. Moreover, the addition of Mn can change the β-Al5 Fe Si phase to α-Al(Mn,Fe)Si phase and reduce the possibility of crack formation, thus improving the wear resistance. Sn added to A356 aluminum alloy forms Mg2 Sn precipitates after heat treatment. Therefore, the unrealizable precipitation hardening Mg2 Si phase and the softening β-Sn phase can reduce the hardness of the alloy, and finally reduce the wear resistance.展开更多
Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under t...Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under the loads of 275 N at 25 °C, 150 N at 100 °C and 75 N at 200 °C, respectively. However, as the load is less than 50 N, the wear rate at 200 °C is lower than that at 25 °C or 100 °C. In mild wear regimes, the wear mechanisms can be classified into abrasive wear, oxidation wear and delamination wear. Delamination wear prevailed as the mild-to-severe wear transition starts to occur; the delamination occurs from the inside of matrix. Subsequently, plastic-extrusion wear as severe wear prevails accompanied with the transition. The thick and hard tribo-layer postpones the mild-to-severe wear transition due to restricting the occurrence of massive plastic deformation of worn surfaces.展开更多
Milling Ti alloy is a very difficult technology. The primary problem is that the miller wear is very rapid and makes the miller break or rapture. Although cutting fluid is mainly used to reduce friction and temperatur...Milling Ti alloy is a very difficult technology. The primary problem is that the miller wear is very rapid and makes the miller break or rapture. Although cutting fluid is mainly used to reduce friction and temperature in cutting area to enhance tool life, it is the largest source of environmental pollution. To develop a technology for the clean and efficient milling Ti alloys, nitrogen gas is used as a cutting media in this paper. Based on lots of experiments and researches, the tool life and wear mechanism of high speed steel miller is analyzed. A conclusion is drawn that, milling with nitrogen gas media yields much longer tool life than dry milling. Tool life equations (Taylor′s equations) are derived for both milling types.展开更多
Tribological behaviour of the die-cast AZ71E magnesium alloy was investigated in an applied load range of 10-50 N at high temperatures under dry sliding conditions using a pin-on-disc wear testing machine. The results...Tribological behaviour of the die-cast AZ71E magnesium alloy was investigated in an applied load range of 10-50 N at high temperatures under dry sliding conditions using a pin-on-disc wear testing machine. The results indicate that the wear rate increases with the increase of applied load and sliding distance, whereas the friction coefficient decreases with the increase of applied load. Scanning electron microscopy and optical microscopy studies on the worn surfaces and sub-surfaces show that the predominant wear mechanism is abrasion at low applied loads. The mild delamination wear accompanying with adhesion wear is the predominant wear mechanism under high applied loads at 150 ℃, whereas the severe delamination and melting wear are the predominant wear mechanisms under high applied load at 200 ℃. An investigation of the microstructure, thermal stability and tensile properties at high temperatures, using the optical microscopy, X-ray diffraction, differential scanning calorimetry, shows that the dominant secondary phase in AZ71E alloy, Al11Ce3, leads to the improvement in the tensile and elongation properties of alloy at high temperatures, which results in the improvement in the anti wear performance.展开更多
文摘The effect of grain refiner, Mn and Sn additions on the sliding wear behavior of A356 aluminum alloys was investigated. The microstructure and worn surfaces of the studied alloys were characterized by optical microscopy(OM), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). The experimental results indicate that the alloy refined by Al-5Ti-B alloy exhibits equiaxed α(Al) dendrites and performs better wear resistance compared with the alloy without the grain refiner. Moreover, the addition of Mn can change the β-Al5 Fe Si phase to α-Al(Mn,Fe)Si phase and reduce the possibility of crack formation, thus improving the wear resistance. Sn added to A356 aluminum alloy forms Mg2 Sn precipitates after heat treatment. Therefore, the unrealizable precipitation hardening Mg2 Si phase and the softening β-Sn phase can reduce the hardness of the alloy, and finally reduce the wear resistance.
基金Project (51071078) supported by the National Natural Science Foundation of ChinaProject (AE201035) supported by the Research Fund of Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, China
文摘Dry wear tests under atmospheric conditions at 25-200 °C and loads of 12.5-300 N were performed for AM60B alloy. The wear rate increases with increasing the load; the mild-to-severe wear transitions occur under the loads of 275 N at 25 °C, 150 N at 100 °C and 75 N at 200 °C, respectively. However, as the load is less than 50 N, the wear rate at 200 °C is lower than that at 25 °C or 100 °C. In mild wear regimes, the wear mechanisms can be classified into abrasive wear, oxidation wear and delamination wear. Delamination wear prevailed as the mild-to-severe wear transition starts to occur; the delamination occurs from the inside of matrix. Subsequently, plastic-extrusion wear as severe wear prevails accompanied with the transition. The thick and hard tribo-layer postpones the mild-to-severe wear transition due to restricting the occurrence of massive plastic deformation of worn surfaces.
文摘Milling Ti alloy is a very difficult technology. The primary problem is that the miller wear is very rapid and makes the miller break or rapture. Although cutting fluid is mainly used to reduce friction and temperature in cutting area to enhance tool life, it is the largest source of environmental pollution. To develop a technology for the clean and efficient milling Ti alloys, nitrogen gas is used as a cutting media in this paper. Based on lots of experiments and researches, the tool life and wear mechanism of high speed steel miller is analyzed. A conclusion is drawn that, milling with nitrogen gas media yields much longer tool life than dry milling. Tool life equations (Taylor′s equations) are derived for both milling types.
基金Project (KLMT201107) supported by the Key Laboratory of Manufacture and Test Techniques for Automobile Parts (Ministry of Education), China
文摘Tribological behaviour of the die-cast AZ71E magnesium alloy was investigated in an applied load range of 10-50 N at high temperatures under dry sliding conditions using a pin-on-disc wear testing machine. The results indicate that the wear rate increases with the increase of applied load and sliding distance, whereas the friction coefficient decreases with the increase of applied load. Scanning electron microscopy and optical microscopy studies on the worn surfaces and sub-surfaces show that the predominant wear mechanism is abrasion at low applied loads. The mild delamination wear accompanying with adhesion wear is the predominant wear mechanism under high applied loads at 150 ℃, whereas the severe delamination and melting wear are the predominant wear mechanisms under high applied load at 200 ℃. An investigation of the microstructure, thermal stability and tensile properties at high temperatures, using the optical microscopy, X-ray diffraction, differential scanning calorimetry, shows that the dominant secondary phase in AZ71E alloy, Al11Ce3, leads to the improvement in the tensile and elongation properties of alloy at high temperatures, which results in the improvement in the anti wear performance.