In this study, the seasonal transition of precipitation over the middle and lower reaches of the Yang-tze River Valley (YRV) from late spring to early summer is investigated. The results show that the seasonal transit...In this study, the seasonal transition of precipitation over the middle and lower reaches of the Yang-tze River Valley (YRV) from late spring to early summer is investigated. The results show that the seasonal transition of precipitation exhibits multi-modes. One of these modes is characterized by an abrupt transition from drought to flood (ATDF) over the middle and lower reaches of the YRV in the seasonal transition of precipitation. It is shown that the ATDF event from May to June 2011 is simply one prominent case of the ATDF mode. The ATDF mode exhibits an obvious decadal variability. The mode has occurred more frequently since 1979, and its amplitude has apparently strengthened since 1994. From the climatic view, the ATDF mode configures a typical seasonal circulation transition from winter to summer, for which the winter circulations are prolonged, and the summer circulations with the rainy season are built up early over the YRV.展开更多
By using Season-reliant Empirical Orthogonal Function (S-EOF) analysis, three dominant modes of the spatial-temporal evolution of the drought/flood patterns in the rainy season over the east of China are revealed for ...By using Season-reliant Empirical Orthogonal Function (S-EOF) analysis, three dominant modes of the spatial-temporal evolution of the drought/flood patterns in the rainy season over the east of China are revealed for the period of 1960-2004. The first two leading modes occur during the turnabout phase of El Nino-Southern Oscillation (ENSO) decaying year, but the drought/flood patterns in the rainy season over the east of China are different due to the role of the Indian Ocean (IO). The first leading mode appears closely correlated with the ENSO events. In the decaying year of El Nino, the associated western North Pacific (WNP) anticyclone located over the Philippine Sea persists from the previous winter to the next early summer, transports warm and moist air toward the southern Yangtze River in China, and leads to wet conditions over this entire region. Therefore, the precipitation anomaly in summer exhibits a 'Southern Flood and Northern Drought' pattern over East China. On the other hand, the basin-wide Indian Ocean sea surface temperature anomaly (SSTA) plays a crucial role in prolonging the impact of ENSO on the second mode during the ENSO decaying summer. The Indian Ocean basin mode (IOBM) warming persists through summer and unleashes its influence, which forces a Matsuno-Gill pattern in the upper troposphere. Over the subtropical western North Pacific, an anomalous anticyclone forms in the lower troposphere. The southerlies on the northwest flank of this anticyclone increase the moisture transport onto central China, leading to abundant rainfall over the middle and lower reaches of the Yangtze River and Huaihe River valleys. The anomalous anticyclone causes dry conditions over South China and the South China Sea (SCS). The precipitation anomaly in summer exhibits a 'Northern Flood and Southern Drought' pattern over East China. Therefore, besides the ENSO event the IOBM is an important factor to influence the drought/flood patterns in the rainy season over the east of China. The third mode is positively correlated with the tropical SSTA in the Indian Ocean from the spring of preceding year(-1) to the winter of following year(+1), but not related to the ENSO events. The positive SSTA in the South China Sea and the Philippine Sea persists from spring to autumn, leading to weak north-south and land-sea thermal contrasts, which may weaken the intensity of the East Asia summer monsoon. The weakened rainfall over the northern Indian monsoon region may link to the third spatial mode through the 'Silk Road' teleconnection or a part of circumglobal teleconnection (CGT). The physical mechanisms that reveal these linkages remain elusive and invite further investigation.展开更多
Future changes in precipitation over global monsoon domains and their adjacent dry regions are investigated using present-day climate simulations(1986–2005)and future climate simulations under the Representative Conc...Future changes in precipitation over global monsoon domains and their adjacent dry regions are investigated using present-day climate simulations(1986–2005)and future climate simulations under the Representative Concentration Pathways(RCP4.5)scenario by the Coupled Model Intercomparison Project Phase 5(CMIP5)models.In the present-day climate simulations,high reproducibility of the extents of global monsoon domains and dry regions is observed from the multi-model ensemble(MME)result;the associated local summer precipitation variation and its interannual variability are also successfully reproduced.In the future,the global monsoon domains are projected to be expanded,while the dry regions are expected to initially increase and then decrease.The summer precipitation and its variability show significant increases over most global monsoon domains and obvious decreases over their adjacent dry regions.These results indicate that currently wet regions will become wetter and dry areas will be dryer under global warming conditions.Further analysis indicates that changes in summer precipitation over global monsoon and dry regions can be interpreted as moisture convergence changes associated with changes in horizontal moisture transport.展开更多
Drought often lasts long and is thus closely related to slowly varying external forcing such as sea surface temperature(SST).Here,based on observed precipitation and SST data along with NCEP-DOE reanalysis data,the po...Drought often lasts long and is thus closely related to slowly varying external forcing such as sea surface temperature(SST).Here,based on observed precipitation and SST data along with NCEP-DOE reanalysis data,the possible impacts of North Atlantic SST on drought formation in Southwest China are investigated.Results show that northeast-southwest-orientated dipole SST anomalies in the mid-high latitudes of the North Atlantic are closely related to autumn drought in Southwest China;the linear correlation coefficient between them reaches 0.48 during 1979-2020,significant at the 0.001 level.The dipole SST anomalies trigger southeastward-propagating Rossby waves and induce barotropic cyclonic circulation anomalies over India and the western Tibetan Plateau.This enhances the upward motion in northern India and the western Tibetan Plateau and causes a compensating downdraft,reduced precipitation,and consequent drought formation in Southwest China.展开更多
Factor analysis was used to investigate the changes of dry-wet climate in the dry season in Yunnan during 1961-2007 based on observed data from 15 stations.Three common factors were extracted from the 9 climatic facto...Factor analysis was used to investigate the changes of dry-wet climate in the dry season in Yunnan during 1961-2007 based on observed data from 15 stations.Three common factors were extracted from the 9 climatic factors.The results showed that the dry-wet climate has evidently changed since the early 1960s.The general trends in the changes of drywet climate were described as slight decrease in humidity and gradual enhancement in drought intensity.The climate during 1960s-1980s was under weak-medium drought.But since early 1990s,dry conditions have markedly strengthened and continued due to uneven temporal distribution of rainfall and climate warming.展开更多
Based on data observed from 1979 to 2017,the influence of Arctic sea ice in the previous spring on the first mode of interannual variation in summer drought in the middle and high latitudes of Asia(MHA)is analyzed in ...Based on data observed from 1979 to 2017,the influence of Arctic sea ice in the previous spring on the first mode of interannual variation in summer drought in the middle and high latitudes of Asia(MHA)is analyzed in this paper,and the possible associated physical mechanism is discussed.The results show that when there is more sea ice near the Svalbard Islands in spring while the sea ice in the Barents-Kara Sea decreases,the drought distribution in the MHA shows a north-south dipole pattern in late summer,and drought weakens in the northern MHA region and strengthens in the southern MHA region.By analyzing the main physical process affecting these changes,the change in sea ice in spring is found to lead to the Polar-Eurasian teleconnection pattern,resulting in more precipitation,thicker snow depths,higher temperatures,and higher soil moisture in the northern MHA region in spring and less precipitation,smaller snow depths,and lower soil moisture in the southern MHA region.Such soil conditions last until summer,affect summer precipitation and temperature conditions through soil moisture–atmosphere feedbacks,and ultimately modulate changes in summer drought in the MHA.展开更多
Changes in vegetation phenology are key indicators of the response of ecosystems to climate change.Therefore,knowledge of growing seasons is essential to predict ecosystem changes,especially for regions with a fragile...Changes in vegetation phenology are key indicators of the response of ecosystems to climate change.Therefore,knowledge of growing seasons is essential to predict ecosystem changes,especially for regions with a fragile ecosystem such as the Loess Plateau.In this study,based on the normalized difference vegetation index(NDVI) data,we estimated and analyzed the vegetation phenology in the Loess Plateau from 2000 to 2010 for the beginning,length,and end of the growing season,measuring changes in trends and their relationship to climatic factors.The results show that for 54.84% of the vegetation,the trend was an advancement of the beginning of the growing season(BGS),while for 67.64% the trend was a delay in the end of the growing season(EGS).The length of the growing season(LGS) was extended for 66.28% of the vegetation in the plateau.While the temperature is important for the vegetation to begin the growing season in this region,warmer climate may lead to drought and can become a limiting factor for vegetation growth.We found that increasedprecipitation benefits the advancement of the BGS in this area.Areas with a delayed EGS indicated that the appropriate temperature and rainfall in autumn or winter enhanced photosynthesis and extended the growth process.A positive correlation with precipitation was found for 76.53% of the areas with an extended LGS,indicating that precipitation is one of the key factors in changes in the vegetation phenology in this water-limited region.Precipitation plays an important role in determining the phenological activities of the vegetation in arid and semiarid areas,such as the Loess Plateau.The extended growing season will significantly influence both the vegetation productivity and the carbon fixation capacity in this region.展开更多
Tien river and Hau river are two main branches of Cuu Long River which have hydrology regime directly effected by climate change and sea level rise. The flow of the dry season in the Tien and Hau rivers plays a key ro...Tien river and Hau river are two main branches of Cuu Long River which have hydrology regime directly effected by climate change and sea level rise. The flow of the dry season in the Tien and Hau rivers plays a key role in the socio-economic development of the Mekong Delta, especially in agricultural production. The study aims to provide useful information in socio-economic development planning and water use strategies for managers, planners and policymarkers of the provinces/cities in the Mekong Delta. This paper presents the study results in changing of dry season flows in Tien river and Hau river under the impacts of climate change in order to propose measures for protection, substainable development and water security.展开更多
The purpose of this study was to determine the effects of road transportation under heat conditions on some haematological [Ht (haematocrit), blood cells count and EOF (erythrocytes osmotic fragility)] and physiol...The purpose of this study was to determine the effects of road transportation under heat conditions on some haematological [Ht (haematocrit), blood cells count and EOF (erythrocytes osmotic fragility)] and physiological [Tr (rectal temperature), HR (heart) and RR (respiratory rates), and circulating levels of Cor (cortisol), Glu (glucose) and minerals] parameters in Moroccan dromedary camels. The animals were subjected to road transportation stressor for 2 h by truck during the hot-dry season. Blood samples were collected before loading and transport, and at the end of transport. Transportation induced a significant increase (P 〈 0.05) of erythrocytes count, Ht, EOF, Tr, HR and RR by comparison to values observed before transportation. The same stress conditions induced a significant increase (P 〈 0.05) of plasma Cor (ng/mL) and blood Glu (mM) (220 ± 30 vs. 137 ± 20, 9.7 ± 1.2 vs. 6.4 ± 1. 1 respectively) and a significant decrease (P 〈 0.05) of plasma magnesium (mM) (0.5 ± 0.1 vs. 0.9 ± 0.1) comparatively to pre-transportation values. These results indicate that road transportation associated to heat may be considered as a potent stressor which is able to induce several cellular alterations in camels. Further studies of an eventual protective role of vitamin C against haemolysis induced by transportation stress in camel are needed.展开更多
The variation characteristics of precipitation during the winter (between October and the following March, to be referred to as just "the winter" hereafter) in Guangdong province during the past 50 years (from 19...The variation characteristics of precipitation during the winter (between October and the following March, to be referred to as just "the winter" hereafter) in Guangdong province during the past 50 years (from 1957 to 2006) and the relationship with Pacific SST are studied using the methods of Empirical Orthogonal Function (EOF) analysis, wavelet analysis, and correlation analysis. The results show that The Guangdong precipitation during the winter exhibits quasi-periodic significant oscillations of 40 years and 2 years; rainfall is less from the end of the 1950s to the start of the 1970s and from the end of the 1990s to the present than from the mid 1970s to the mid 1990s. The frequency of sustained drought is more than sustained flooding during the winter. The Guangdong precipitation during this time period is in significantly positive correlation to the equatorial central and eastern Pacific SST, but in a significantly negative correlation with the western and northern Pacific SST east of the Philippine Sea. 61.5% of the sustained drought occurred in the phase of negative anomalies of the Nifio3.4 index and 38.5% in the phase of positive ones. A composite analysis of atmospheric circulation is performed for the positive and negative phases of the Nifio3.4 region associated with the sustained drought. The results showed that a weak polar vortex, a strong trough in Europe and a ridge near Balkhash Lake, active cold air and consistent northerly wind anomalies controlling Guangdong at low levels, an inactive westerly low disturbance in the low-mid latitude of the Asian continent, and a weak southern branch westerly trough, are all mutual causes for the sustained drought.展开更多
As shown in comparison and study of the HIRS-Tb12 data and conventional data, temperature, humidity and vertical motion are structured differently in the Southern and Northern Hemispheres, which are well depicted with...As shown in comparison and study of the HIRS-Tb12 data and conventional data, temperature, humidity and vertical motion are structured differently in the Southern and Northern Hemispheres, which are well depicted with the HIRS-Tb12 data. When high pressures rapidly decrease over the regions of South China Sea and Arabian Sea with the HIRS-Tb12 less than 200 W/m2, monsoons will set off in the South China Sea, Arabian Sea and Bay of Bengal, respectively. From a year of significant drought to one of significant floods, the trend of evolution is significantly different in the downdraft areas of the subtropical highs between the two hemispheres.展开更多
[Objective] The aim was to provide references for development of industries engaging in flowers and trees in Beipei area in Chongqing. [Method] The occurring trend, intensity trend of summer drought, relationship of i...[Objective] The aim was to provide references for development of industries engaging in flowers and trees in Beipei area in Chongqing. [Method] The occurring trend, intensity trend of summer drought, relationship of intensity with rainfall and extremely highest temperature, occurring trend during initial period of summer drought and the effects in mountain cities were analyzed, based on information on lasting period, rainfall, average temperature, extremely highest temperature of sum- mer drought in Beipei area in mountain cities during 1981-2010 and, growth condi- tion and phenological phenomena of Michelia champaca during 2005-2007. [Result] The occurring probability of summer drought in mountain cities was 57% and the probabilities of light, moderate, heavy and extreme drought were 30%, 10%, 7% and 10%; intensity of summer drought was none of linear relation with rainfall and ex- tremely highest temperature. In summer drought, daily average rainfall was less than 0.9 ram; extremely highest temperature was 35.0-45.0 ℃ with probability at 30%; initial period of summer drought was from later June to middle August and of extreme drought was later June-later July; the ending period was early September. During drought, when the extremely highest temperature (〉35.0 ℃) occurred in three days within a Hou, flowers and trees were affected by the hot drought and when the extreme temperature (〉40.0 ℃) occurred in three days within a Hou, the plants were seriously affected. [Conclusion] Based on characters of summer drought, pre- cautions can be taken to reduce effects of summer drought on flowers and trees with the help of weather forecast.展开更多
Based on the daily observed data from eight sounding stations and the daily mountain runoff data from nine rivers in summer from 1960 to 2009 in four typical study areas located in arid region of Northwest China(ARNC)...Based on the daily observed data from eight sounding stations and the daily mountain runoff data from nine rivers in summer from 1960 to 2009 in four typical study areas located in arid region of Northwest China(ARNC),the change trends,abrupt change points,and their significance of runoff and 0℃ level height(FLH) were analyzed in ARNC in the last 50 years by using Mann-Kendall(MK) nonparametric test,and the quantitative relationship between runoff and FLH in summer was also analyzed with the linear regression and elastic coefficient methods.The results are indicated as follows:(1) in recent 50 years,there is a similar changing trend between the summer runoff and FLH in ARNC and each region has its own unique feature.The summer runoff has been significantly ascending in the Tianshan Mountains and on the northern slope of the Qilian Mountains(NSQM) compared to that of the northern slope of the Kunlun Mountains(NSKM).Likewise,the FLH has been taking on a markedly rising trend on the northern slopes of the Tianshan and Qilian Mountains(NSTM and NSQM) in comparison with the southern slope of the Tianshan Mountains(SSTM).However,the FLH on NSKM has been decreasing with the speed of 2.33 m every year.(2) Abrupt change analysis indicates that the period of abrupt change happened for summer runoff and FLH is totally different among the four typical study regions,and even in same region.(3) There is a positive significant relation between the summer runoff and FLH in ARNC(NSQM P <0.05;other three regions P <0.01).Therefore,the ascending and descending of the summer FLH is a vital factor inducing the change of summer runoff in ARNC.(4) The elastic coefficient of summer runoff to the change of summer FLH on NSKM,NSTM,NSQM,and SSTM are 7.19,3.80,2.79,and 6.63,respectively,which indicates that there exists the regional difference in the sensibility of summer runoff to the change of summer FLH in ARNC.The distinct proportion of glacial meltwater runoff is an important cause resulting in the regional difference of sensibility.展开更多
To evaluate the applicability of the Standardized Precipitation-Evapotranspiration Index (SPEI) and the self-calibrated Palmer Drought Severity Index (scPDSI) to paleoclimate reconstructions in the east Asian summ...To evaluate the applicability of the Standardized Precipitation-Evapotranspiration Index (SPEI) and the self-calibrated Palmer Drought Severity Index (scPDSI) to paleoclimate reconstructions in the east Asian summer monsoon region, we used a 194-year tree-ring width chronology from Guancen Mountain, Shanxi Province, China, to investigate its correlation with SPEI and scPDSI, respectively. The results indicated scPDSI as a robust drought index that could be reconstructed from tree-ring width on Guancen Mountain other hydroclimate-related Significant correlations with series illustrated that our reconstruction captured common variations of hydroclimate in the surrounding areas. Additionally, our reconstruction showed significant correlation with nearby grid points of the Monsoon Asia Drought Atlas (MADA). However, while unprecedented drying trend existed during the past several decades in MADA, it was not represented in our reconstruction or in instrumental scPDSI/Dai-PDSI. This may imply that MADA overestimated drought severity during the past several decades in our study area; this overestimation was probably caused by an insufficient spatiotemporal distribution of the tree-ring network used by MADA. Therefore, more drought reconstructions based on individual sampling sites in eastern Asia are necessary to gain a thorough understanding of the Asian Monsoon climate variability.展开更多
Research for changes of soil water and salt is an important content of land sciences and agriculture sciences in arid and semi arid regions. In this paper, sampling in actual agricultural fields, laboratory analysis o...Research for changes of soil water and salt is an important content of land sciences and agriculture sciences in arid and semi arid regions. In this paper, sampling in actual agricultural fields, laboratory analysis of soil samples and statistical analysis methods are used to quantitatively analyze soil salinity changes under different ir- rigation methods throughout the cotton growing season in Shihezi reclamation area. The results show that irrigation methods play an important role in soil salt content in the surface soil (0-20 cm) and sub-deep soil (40-60 cm), fol- lowed by deep soil layer (60-100 cm) and root soil layer (20-40 cm). Furrow irrigation yields the maximum soil salt content in deep layer (60-100 cm) or sub-deep layer (40-60 cm) and the maximum salinity occurs in the first half of the cotton growing season (June or earlier). In contrast, drip irrigation yields the maximum soil salinity in the root layer (20-40 cm) or sub-deep (40-60 cm), and this usually appears in the second half growing season (July or af- ter). The ratio of chloride ion to sulfate ion (Cl-/SO2- 4) and its change in the soil are on the rise under furrow irrigation while the value first increased and then decreased with a peak point in June under drip irrigation. This suggests that furrow irrigation may shift the type of soil salinization to chloride ion type moreso than drip irrigation. Potassium and sodium ion contents of the soil show that soil sodium+potassium content will drop after the first rise under furrow irrigation and the value is manifested by fluctuations under drip irrigation. Potassium+sodium content change is relatively more stable in the whole cotton growth period under irrigation methods. The maximum of sodium and potassium content of the soil usually occur in deep soil layer (60-100 cm) or sub-deep soil layer (40-60 cm) in most sample points under furrow irrigation while it is inconsistent in different sample points under drip irrigation. A non- parametric test for paired samples is used to analyze differences of soil salt content under different irrigation methods. This analysis shows that the impact of irrigation on soil salinity is most significant in July, followed by August, June, May, and April in most sample points. The most significant impact of irrigation methods occurs in the surface soil layer (0-20 cm), followed by deep layer (60-100 cm), root layer (20-40 cm) and sub-deep (40-60 cm). These conclusions will be benefitial for mitigation of soil salinization, irrigation and fertilization and sustainable land use.展开更多
Sporadic rain events that occur during summer play an important role in the initiation of biological activity of semi-arid grasslands.To understand how ecosystem processes of a buffel grass(Cenchrus ciliaris L.)-domin...Sporadic rain events that occur during summer play an important role in the initiation of biological activity of semi-arid grasslands.To understand how ecosystem processes of a buffel grass(Cenchrus ciliaris L.)-dominated grassland respond to summer rain events,an LI 6 400 gas exchange system was used to measure the leaf gas exchange and plant canopy chambers were used to measure net ecosystem CO2exchange(NEE) and ecosystem respiration(Reco), which were made sequentially during periods before rain(dry) and after rain(wet). Gross ecosystem photosynthesis(GEP) was estimated from NEE and Reco fluxes, and light use efficiency parameters were estimated using a rectangular hyperbola model. Prior to the monsoon rain, grassland biomass was non-green and dry exhibiting positive NEE(carbon source) and low GEP values during which the soil water became increasingly scarce. An initial rain pulse(60 mm) increased the NEE from pre-monsoon levels to negative NEE(carbon gain) with markedly higher GEP and increased green biomass. The leaf photosynthesis and leaf stomatal conductance were also improved substantially. The maximum net CO2uptake(i.e.,negative NEE) was sustained in the subsequent period due to multiple rain events. As a result, the grassland acted as a net carbon sink for 20 d after first rain. With cessation of rain(drying cycle), net CO2 uptake was reduced to lower values. High sensitivity of this grassland to rain suggests that any decrease in precipitation in summer may likely affect the carbon sequestration of the semiarid ecosystem.展开更多
Here we report a multiyear study on the surface roughness length and bulk transfer coefficients over the degraded grassland and cropland surfaces in a semiarid area of China. Eddy covariance measurement and the meteor...Here we report a multiyear study on the surface roughness length and bulk transfer coefficients over the degraded grassland and cropland surfaces in a semiarid area of China. Eddy covariance measurement and the meteorological profile observation data were used to analyze characteristics of these parameters on the diurnal, seasonal, and annual scales. Significant seasonal and annual variations of the aerodynamic roughness length are observed over the two surfaces. A large variation of kB-1 is measured during the day. Both kB-1 and the bulk transfer coefficients exhibit significant seasonal and annual variations. During the growing season (May to October), average Cd and Ch are 3.1×10-3 and 2.5×10-3 over the degrade grassland surface, and 4.7×10-3 and 3.1×10-3 over the cropland surface respectively. During the non-growing season, average Cd and Ch are 2.3×10-3 and 2.0×10-3 over the degrade grassland surface, and 2.9×10-3 and 2.2×10-3 over the cropland surface respectively.展开更多
The arid and semi-arid(ASA) region of Asia occupies a large area in the middle latitudes of the Northern Hemisphere, of which the main body is the ASA region of Central and East Asia(CEA). In this region, the climate ...The arid and semi-arid(ASA) region of Asia occupies a large area in the middle latitudes of the Northern Hemisphere, of which the main body is the ASA region of Central and East Asia(CEA). In this region, the climate is fragile and the environment is sensitive. The eastern part of the ASA region of CEA is located in the marginal zone of the East Asian monsoon and is jointly influenced by westerly circulation and the monsoon system, while in the western part of the ASA of CEA,the climate is mainly controlled by westerly circulation. To understand and predict the climate over this region, it is necessary to investigate the influence of general circulation on the climate system over the ASA region of CEA. In this paper, recent progress in understanding the relationship between the general circulation and climate change over the ASA region is systematically reviewed. Previous studies have demonstrated that atmospheric circulation represents a significant factor in climate change over the ASA region of CEA. In the years with a strong East Asian summer monsoon, the water vapor flux increases and precipitation is abundant in the southeastern part of Northwest China. The opposite situation occurs in years when the East Asian summer monsoon is weak. With the weakening of the East Asian summer monsoon, the climate tends to dry over the semi-arid region located in the monsoon marginal zone. Recently, owing to the strengthening of the South Asian monsoon, more water vapor has been transported to the ASA region of Asia. The Plateau summer monsoon intensity and the precipitation in summer exhibit a significant positive correlation in Central Asia but a negative correlation in North China and Mongolia. A significant positive correlation also exists between the westerly index and the temperature over the arid region of CEA. The change in the westerly circulation may be the main factor affecting precipitation over the arid region of Central Asia.展开更多
The observation stations of Northern China are divided into three regions:the arid Northwest China,the Loess Plateau,and the cool Northeast China.The consistencies,differences,and associated mechanisms of land surface...The observation stations of Northern China are divided into three regions:the arid Northwest China,the Loess Plateau,and the cool Northeast China.The consistencies,differences,and associated mechanisms of land surface thermal-hydrologic processes among the three regions were studied based on the normalization of major variables of land surface thermal-hydrologic processes,using data collected during prevailing summer monsoon period(July and August,2008).It is shown that differences of surface thermal-hydrologic processes are remarkable among the three regions because of different impacts of summer monsoon.Especially their soil wet layers occur at different depths,and the average albedo and its diurnal variations are distinctly different.Surface net short-wave radiation in the Loess Plateau is close to that in the cool Northeast China,but its surface net long-wave radiation is close to that in the arid Northwest China.And the ratio of net radiation to global solar radiation in the cool Northeast China is higher than the other two regions,though its temperature is lower.There are obvious regional differences in the ratios of surface sensible and latent heat fluxes to net radiation for the three regions because of distinct contribution of sensible and latent heat fluxesto land surface energy balance.The three regions are markedly different in the ratio of water vapor flux to pan evaporation,but they are consistent in the ratio of water vapor flux to precipitation.These results not only indicate different influences of climate and environmental factors on land surface thermal-hydrologic processes in the three regions,but also show that summer monsoon is important in the formation and variation of the pattern of land surface thermal-hydrologic processes.展开更多
基金supported by the National Basic Research Program of China (Grant No.2009CB421401)the National Key Technologies R&D Program of China (Grant No. 2009BAC51B02)+1 种基金the National Natural Science Foundation of China (Grant No. 40975022)the Special Scien-tific Research Fund of the Meteorological Public Welfare Profession of China (Grant No. GYHY200906018)
文摘In this study, the seasonal transition of precipitation over the middle and lower reaches of the Yang-tze River Valley (YRV) from late spring to early summer is investigated. The results show that the seasonal transition of precipitation exhibits multi-modes. One of these modes is characterized by an abrupt transition from drought to flood (ATDF) over the middle and lower reaches of the YRV in the seasonal transition of precipitation. It is shown that the ATDF event from May to June 2011 is simply one prominent case of the ATDF mode. The ATDF mode exhibits an obvious decadal variability. The mode has occurred more frequently since 1979, and its amplitude has apparently strengthened since 1994. From the climatic view, the ATDF mode configures a typical seasonal circulation transition from winter to summer, for which the winter circulations are prolonged, and the summer circulations with the rainy season are built up early over the YRV.
基金supported by the National Basic Research Program of China (973 Program) (No. 2012CB955604)the National Natural Science Foundation of China (Nos. 40975038, 40830106)+1 种基金the CMA Program (GYHY200906008)the 111 Project (B07036)
文摘By using Season-reliant Empirical Orthogonal Function (S-EOF) analysis, three dominant modes of the spatial-temporal evolution of the drought/flood patterns in the rainy season over the east of China are revealed for the period of 1960-2004. The first two leading modes occur during the turnabout phase of El Nino-Southern Oscillation (ENSO) decaying year, but the drought/flood patterns in the rainy season over the east of China are different due to the role of the Indian Ocean (IO). The first leading mode appears closely correlated with the ENSO events. In the decaying year of El Nino, the associated western North Pacific (WNP) anticyclone located over the Philippine Sea persists from the previous winter to the next early summer, transports warm and moist air toward the southern Yangtze River in China, and leads to wet conditions over this entire region. Therefore, the precipitation anomaly in summer exhibits a 'Southern Flood and Northern Drought' pattern over East China. On the other hand, the basin-wide Indian Ocean sea surface temperature anomaly (SSTA) plays a crucial role in prolonging the impact of ENSO on the second mode during the ENSO decaying summer. The Indian Ocean basin mode (IOBM) warming persists through summer and unleashes its influence, which forces a Matsuno-Gill pattern in the upper troposphere. Over the subtropical western North Pacific, an anomalous anticyclone forms in the lower troposphere. The southerlies on the northwest flank of this anticyclone increase the moisture transport onto central China, leading to abundant rainfall over the middle and lower reaches of the Yangtze River and Huaihe River valleys. The anomalous anticyclone causes dry conditions over South China and the South China Sea (SCS). The precipitation anomaly in summer exhibits a 'Northern Flood and Southern Drought' pattern over East China. Therefore, besides the ENSO event the IOBM is an important factor to influence the drought/flood patterns in the rainy season over the east of China. The third mode is positively correlated with the tropical SSTA in the Indian Ocean from the spring of preceding year(-1) to the winter of following year(+1), but not related to the ENSO events. The positive SSTA in the South China Sea and the Philippine Sea persists from spring to autumn, leading to weak north-south and land-sea thermal contrasts, which may weaken the intensity of the East Asia summer monsoon. The weakened rainfall over the northern Indian monsoon region may link to the third spatial mode through the 'Silk Road' teleconnection or a part of circumglobal teleconnection (CGT). The physical mechanisms that reveal these linkages remain elusive and invite further investigation.
基金supported by the National Basic Research Program of China(2012CB955401)the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of the Chinese Academy of Sciences(XDA05090306)
文摘Future changes in precipitation over global monsoon domains and their adjacent dry regions are investigated using present-day climate simulations(1986–2005)and future climate simulations under the Representative Concentration Pathways(RCP4.5)scenario by the Coupled Model Intercomparison Project Phase 5(CMIP5)models.In the present-day climate simulations,high reproducibility of the extents of global monsoon domains and dry regions is observed from the multi-model ensemble(MME)result;the associated local summer precipitation variation and its interannual variability are also successfully reproduced.In the future,the global monsoon domains are projected to be expanded,while the dry regions are expected to initially increase and then decrease.The summer precipitation and its variability show significant increases over most global monsoon domains and obvious decreases over their adjacent dry regions.These results indicate that currently wet regions will become wetter and dry areas will be dryer under global warming conditions.Further analysis indicates that changes in summer precipitation over global monsoon and dry regions can be interpreted as moisture convergence changes associated with changes in horizontal moisture transport.
基金financially supported by the National Natural Science Foundation of China (NSFC) [grant numbers 42088101 and 41875099]。
文摘Drought often lasts long and is thus closely related to slowly varying external forcing such as sea surface temperature(SST).Here,based on observed precipitation and SST data along with NCEP-DOE reanalysis data,the possible impacts of North Atlantic SST on drought formation in Southwest China are investigated.Results show that northeast-southwest-orientated dipole SST anomalies in the mid-high latitudes of the North Atlantic are closely related to autumn drought in Southwest China;the linear correlation coefficient between them reaches 0.48 during 1979-2020,significant at the 0.001 level.The dipole SST anomalies trigger southeastward-propagating Rossby waves and induce barotropic cyclonic circulation anomalies over India and the western Tibetan Plateau.This enhances the upward motion in northern India and the western Tibetan Plateau and causes a compensating downdraft,reduced precipitation,and consequent drought formation in Southwest China.
基金supported by the program(40675045) from the National Natural Science Foundation of China
文摘Factor analysis was used to investigate the changes of dry-wet climate in the dry season in Yunnan during 1961-2007 based on observed data from 15 stations.Three common factors were extracted from the 9 climatic factors.The results showed that the dry-wet climate has evidently changed since the early 1960s.The general trends in the changes of drywet climate were described as slight decrease in humidity and gradual enhancement in drought intensity.The climate during 1960s-1980s was under weak-medium drought.But since early 1990s,dry conditions have markedly strengthened and continued due to uneven temporal distribution of rainfall and climate warming.
基金jointly supported by the National Key R&D Program of China[grant number 2017YFE0111800]the National Science Foundation of China[grant numbers 41991281 and 41875110].
文摘Based on data observed from 1979 to 2017,the influence of Arctic sea ice in the previous spring on the first mode of interannual variation in summer drought in the middle and high latitudes of Asia(MHA)is analyzed in this paper,and the possible associated physical mechanism is discussed.The results show that when there is more sea ice near the Svalbard Islands in spring while the sea ice in the Barents-Kara Sea decreases,the drought distribution in the MHA shows a north-south dipole pattern in late summer,and drought weakens in the northern MHA region and strengthens in the southern MHA region.By analyzing the main physical process affecting these changes,the change in sea ice in spring is found to lead to the Polar-Eurasian teleconnection pattern,resulting in more precipitation,thicker snow depths,higher temperatures,and higher soil moisture in the northern MHA region in spring and less precipitation,smaller snow depths,and lower soil moisture in the southern MHA region.Such soil conditions last until summer,affect summer precipitation and temperature conditions through soil moisture–atmosphere feedbacks,and ultimately modulate changes in summer drought in the MHA.
基金supported by the“Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues’’of the Chinese Academy of Sciences(Grant No.XDA05060104)
文摘Changes in vegetation phenology are key indicators of the response of ecosystems to climate change.Therefore,knowledge of growing seasons is essential to predict ecosystem changes,especially for regions with a fragile ecosystem such as the Loess Plateau.In this study,based on the normalized difference vegetation index(NDVI) data,we estimated and analyzed the vegetation phenology in the Loess Plateau from 2000 to 2010 for the beginning,length,and end of the growing season,measuring changes in trends and their relationship to climatic factors.The results show that for 54.84% of the vegetation,the trend was an advancement of the beginning of the growing season(BGS),while for 67.64% the trend was a delay in the end of the growing season(EGS).The length of the growing season(LGS) was extended for 66.28% of the vegetation in the plateau.While the temperature is important for the vegetation to begin the growing season in this region,warmer climate may lead to drought and can become a limiting factor for vegetation growth.We found that increasedprecipitation benefits the advancement of the BGS in this area.Areas with a delayed EGS indicated that the appropriate temperature and rainfall in autumn or winter enhanced photosynthesis and extended the growth process.A positive correlation with precipitation was found for 76.53% of the areas with an extended LGS,indicating that precipitation is one of the key factors in changes in the vegetation phenology in this water-limited region.Precipitation plays an important role in determining the phenological activities of the vegetation in arid and semiarid areas,such as the Loess Plateau.The extended growing season will significantly influence both the vegetation productivity and the carbon fixation capacity in this region.
文摘Tien river and Hau river are two main branches of Cuu Long River which have hydrology regime directly effected by climate change and sea level rise. The flow of the dry season in the Tien and Hau rivers plays a key role in the socio-economic development of the Mekong Delta, especially in agricultural production. The study aims to provide useful information in socio-economic development planning and water use strategies for managers, planners and policymarkers of the provinces/cities in the Mekong Delta. This paper presents the study results in changing of dry season flows in Tien river and Hau river under the impacts of climate change in order to propose measures for protection, substainable development and water security.
文摘The purpose of this study was to determine the effects of road transportation under heat conditions on some haematological [Ht (haematocrit), blood cells count and EOF (erythrocytes osmotic fragility)] and physiological [Tr (rectal temperature), HR (heart) and RR (respiratory rates), and circulating levels of Cor (cortisol), Glu (glucose) and minerals] parameters in Moroccan dromedary camels. The animals were subjected to road transportation stressor for 2 h by truck during the hot-dry season. Blood samples were collected before loading and transport, and at the end of transport. Transportation induced a significant increase (P 〈 0.05) of erythrocytes count, Ht, EOF, Tr, HR and RR by comparison to values observed before transportation. The same stress conditions induced a significant increase (P 〈 0.05) of plasma Cor (ng/mL) and blood Glu (mM) (220 ± 30 vs. 137 ± 20, 9.7 ± 1.2 vs. 6.4 ± 1. 1 respectively) and a significant decrease (P 〈 0.05) of plasma magnesium (mM) (0.5 ± 0.1 vs. 0.9 ± 0.1) comparatively to pre-transportation values. These results indicate that road transportation associated to heat may be considered as a potent stressor which is able to induce several cellular alterations in camels. Further studies of an eventual protective role of vitamin C against haemolysis induced by transportation stress in camel are needed.
基金Specialized science project for social welfare (meteorological) industries (GYHY200706037)Science research project for Guangdong Meteorological Bureau (2008A02, 2008B03)Science and technology planning project for Guangdong province (2009A030302012)
文摘The variation characteristics of precipitation during the winter (between October and the following March, to be referred to as just "the winter" hereafter) in Guangdong province during the past 50 years (from 1957 to 2006) and the relationship with Pacific SST are studied using the methods of Empirical Orthogonal Function (EOF) analysis, wavelet analysis, and correlation analysis. The results show that The Guangdong precipitation during the winter exhibits quasi-periodic significant oscillations of 40 years and 2 years; rainfall is less from the end of the 1950s to the start of the 1970s and from the end of the 1990s to the present than from the mid 1970s to the mid 1990s. The frequency of sustained drought is more than sustained flooding during the winter. The Guangdong precipitation during this time period is in significantly positive correlation to the equatorial central and eastern Pacific SST, but in a significantly negative correlation with the western and northern Pacific SST east of the Philippine Sea. 61.5% of the sustained drought occurred in the phase of negative anomalies of the Nifio3.4 index and 38.5% in the phase of positive ones. A composite analysis of atmospheric circulation is performed for the positive and negative phases of the Nifio3.4 region associated with the sustained drought. The results showed that a weak polar vortex, a strong trough in Europe and a ridge near Balkhash Lake, active cold air and consistent northerly wind anomalies controlling Guangdong at low levels, an inactive westerly low disturbance in the low-mid latitude of the Asian continent, and a weak southern branch westerly trough, are all mutual causes for the sustained drought.
基金Essential Scientific Research Project in the national 9th five-year development plan (96-908-05-06-08)
文摘As shown in comparison and study of the HIRS-Tb12 data and conventional data, temperature, humidity and vertical motion are structured differently in the Southern and Northern Hemispheres, which are well depicted with the HIRS-Tb12 data. When high pressures rapidly decrease over the regions of South China Sea and Arabian Sea with the HIRS-Tb12 less than 200 W/m2, monsoons will set off in the South China Sea, Arabian Sea and Bay of Bengal, respectively. From a year of significant drought to one of significant floods, the trend of evolution is significantly different in the downdraft areas of the subtropical highs between the two hemispheres.
基金Supported by Key Program of Chongqing Meteorological Bureau(ywgg-201217)~~
文摘[Objective] The aim was to provide references for development of industries engaging in flowers and trees in Beipei area in Chongqing. [Method] The occurring trend, intensity trend of summer drought, relationship of intensity with rainfall and extremely highest temperature, occurring trend during initial period of summer drought and the effects in mountain cities were analyzed, based on information on lasting period, rainfall, average temperature, extremely highest temperature of sum- mer drought in Beipei area in mountain cities during 1981-2010 and, growth condi- tion and phenological phenomena of Michelia champaca during 2005-2007. [Result] The occurring probability of summer drought in mountain cities was 57% and the probabilities of light, moderate, heavy and extreme drought were 30%, 10%, 7% and 10%; intensity of summer drought was none of linear relation with rainfall and ex- tremely highest temperature. In summer drought, daily average rainfall was less than 0.9 ram; extremely highest temperature was 35.0-45.0 ℃ with probability at 30%; initial period of summer drought was from later June to middle August and of extreme drought was later June-later July; the ending period was early September. During drought, when the extremely highest temperature (〉35.0 ℃) occurred in three days within a Hou, flowers and trees were affected by the hot drought and when the extreme temperature (〉40.0 ℃) occurred in three days within a Hou, the plants were seriously affected. [Conclusion] Based on characters of summer drought, pre- cautions can be taken to reduce effects of summer drought on flowers and trees with the help of weather forecast.
基金supported by National Basic Research Program of China(Grant No. 2010CB951003)
文摘Based on the daily observed data from eight sounding stations and the daily mountain runoff data from nine rivers in summer from 1960 to 2009 in four typical study areas located in arid region of Northwest China(ARNC),the change trends,abrupt change points,and their significance of runoff and 0℃ level height(FLH) were analyzed in ARNC in the last 50 years by using Mann-Kendall(MK) nonparametric test,and the quantitative relationship between runoff and FLH in summer was also analyzed with the linear regression and elastic coefficient methods.The results are indicated as follows:(1) in recent 50 years,there is a similar changing trend between the summer runoff and FLH in ARNC and each region has its own unique feature.The summer runoff has been significantly ascending in the Tianshan Mountains and on the northern slope of the Qilian Mountains(NSQM) compared to that of the northern slope of the Kunlun Mountains(NSKM).Likewise,the FLH has been taking on a markedly rising trend on the northern slopes of the Tianshan and Qilian Mountains(NSTM and NSQM) in comparison with the southern slope of the Tianshan Mountains(SSTM).However,the FLH on NSKM has been decreasing with the speed of 2.33 m every year.(2) Abrupt change analysis indicates that the period of abrupt change happened for summer runoff and FLH is totally different among the four typical study regions,and even in same region.(3) There is a positive significant relation between the summer runoff and FLH in ARNC(NSQM P <0.05;other three regions P <0.01).Therefore,the ascending and descending of the summer FLH is a vital factor inducing the change of summer runoff in ARNC.(4) The elastic coefficient of summer runoff to the change of summer FLH on NSKM,NSTM,NSQM,and SSTM are 7.19,3.80,2.79,and 6.63,respectively,which indicates that there exists the regional difference in the sensibility of summer runoff to the change of summer FLH in ARNC.The distinct proportion of glacial meltwater runoff is an important cause resulting in the regional difference of sensibility.
基金supported by the National Natural Science Foundation of China(41201046,40890051),KZZDEW-04-01the State Key Laboratory of Loess and Quaternary Geology(SKLLQG),and the West Doctoral Foundation of Chinese Academy of Sciences.This is a SISTRR contribution(No.29)
文摘To evaluate the applicability of the Standardized Precipitation-Evapotranspiration Index (SPEI) and the self-calibrated Palmer Drought Severity Index (scPDSI) to paleoclimate reconstructions in the east Asian summer monsoon region, we used a 194-year tree-ring width chronology from Guancen Mountain, Shanxi Province, China, to investigate its correlation with SPEI and scPDSI, respectively. The results indicated scPDSI as a robust drought index that could be reconstructed from tree-ring width on Guancen Mountain other hydroclimate-related Significant correlations with series illustrated that our reconstruction captured common variations of hydroclimate in the surrounding areas. Additionally, our reconstruction showed significant correlation with nearby grid points of the Monsoon Asia Drought Atlas (MADA). However, while unprecedented drying trend existed during the past several decades in MADA, it was not represented in our reconstruction or in instrumental scPDSI/Dai-PDSI. This may imply that MADA overestimated drought severity during the past several decades in our study area; this overestimation was probably caused by an insufficient spatiotemporal distribution of the tree-ring network used by MADA. Therefore, more drought reconstructions based on individual sampling sites in eastern Asia are necessary to gain a thorough understanding of the Asian Monsoon climate variability.
基金National Natural Science Foundation of China(41171083/U1203181)
文摘Research for changes of soil water and salt is an important content of land sciences and agriculture sciences in arid and semi arid regions. In this paper, sampling in actual agricultural fields, laboratory analysis of soil samples and statistical analysis methods are used to quantitatively analyze soil salinity changes under different ir- rigation methods throughout the cotton growing season in Shihezi reclamation area. The results show that irrigation methods play an important role in soil salt content in the surface soil (0-20 cm) and sub-deep soil (40-60 cm), fol- lowed by deep soil layer (60-100 cm) and root soil layer (20-40 cm). Furrow irrigation yields the maximum soil salt content in deep layer (60-100 cm) or sub-deep layer (40-60 cm) and the maximum salinity occurs in the first half of the cotton growing season (June or earlier). In contrast, drip irrigation yields the maximum soil salinity in the root layer (20-40 cm) or sub-deep (40-60 cm), and this usually appears in the second half growing season (July or af- ter). The ratio of chloride ion to sulfate ion (Cl-/SO2- 4) and its change in the soil are on the rise under furrow irrigation while the value first increased and then decreased with a peak point in June under drip irrigation. This suggests that furrow irrigation may shift the type of soil salinization to chloride ion type moreso than drip irrigation. Potassium and sodium ion contents of the soil show that soil sodium+potassium content will drop after the first rise under furrow irrigation and the value is manifested by fluctuations under drip irrigation. Potassium+sodium content change is relatively more stable in the whole cotton growth period under irrigation methods. The maximum of sodium and potassium content of the soil usually occur in deep soil layer (60-100 cm) or sub-deep soil layer (40-60 cm) in most sample points under furrow irrigation while it is inconsistent in different sample points under drip irrigation. A non- parametric test for paired samples is used to analyze differences of soil salt content under different irrigation methods. This analysis shows that the impact of irrigation on soil salinity is most significant in July, followed by August, June, May, and April in most sample points. The most significant impact of irrigation methods occurs in the surface soil layer (0-20 cm), followed by deep layer (60-100 cm), root layer (20-40 cm) and sub-deep (40-60 cm). These conclusions will be benefitial for mitigation of soil salinization, irrigation and fertilization and sustainable land use.
基金supported by Deutscher Akademischer Austausch Dienst(DAAD),Germanythe University of Bayreuth,Germany.the logistic support provided by Dr.Sudhakar SWAMY and technical staff from Madurai Kamaraj University,India
文摘Sporadic rain events that occur during summer play an important role in the initiation of biological activity of semi-arid grasslands.To understand how ecosystem processes of a buffel grass(Cenchrus ciliaris L.)-dominated grassland respond to summer rain events,an LI 6 400 gas exchange system was used to measure the leaf gas exchange and plant canopy chambers were used to measure net ecosystem CO2exchange(NEE) and ecosystem respiration(Reco), which were made sequentially during periods before rain(dry) and after rain(wet). Gross ecosystem photosynthesis(GEP) was estimated from NEE and Reco fluxes, and light use efficiency parameters were estimated using a rectangular hyperbola model. Prior to the monsoon rain, grassland biomass was non-green and dry exhibiting positive NEE(carbon source) and low GEP values during which the soil water became increasingly scarce. An initial rain pulse(60 mm) increased the NEE from pre-monsoon levels to negative NEE(carbon gain) with markedly higher GEP and increased green biomass. The leaf photosynthesis and leaf stomatal conductance were also improved substantially. The maximum net CO2uptake(i.e.,negative NEE) was sustained in the subsequent period due to multiple rain events. As a result, the grassland acted as a net carbon sink for 20 d after first rain. With cessation of rain(drying cycle), net CO2 uptake was reduced to lower values. High sensitivity of this grassland to rain suggests that any decrease in precipitation in summer may likely affect the carbon sequestration of the semiarid ecosystem.
基金supported by the National Basic Research Program of China (Grant Nos. 2010CB951801 and 2006CB400500)
文摘Here we report a multiyear study on the surface roughness length and bulk transfer coefficients over the degraded grassland and cropland surfaces in a semiarid area of China. Eddy covariance measurement and the meteorological profile observation data were used to analyze characteristics of these parameters on the diurnal, seasonal, and annual scales. Significant seasonal and annual variations of the aerodynamic roughness length are observed over the two surfaces. A large variation of kB-1 is measured during the day. Both kB-1 and the bulk transfer coefficients exhibit significant seasonal and annual variations. During the growing season (May to October), average Cd and Ch are 3.1×10-3 and 2.5×10-3 over the degrade grassland surface, and 4.7×10-3 and 3.1×10-3 over the cropland surface respectively. During the non-growing season, average Cd and Ch are 2.3×10-3 and 2.0×10-3 over the degrade grassland surface, and 2.9×10-3 and 2.2×10-3 over the cropland surface respectively.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41475095, 91737101 & 91744311)
文摘The arid and semi-arid(ASA) region of Asia occupies a large area in the middle latitudes of the Northern Hemisphere, of which the main body is the ASA region of Central and East Asia(CEA). In this region, the climate is fragile and the environment is sensitive. The eastern part of the ASA region of CEA is located in the marginal zone of the East Asian monsoon and is jointly influenced by westerly circulation and the monsoon system, while in the western part of the ASA of CEA,the climate is mainly controlled by westerly circulation. To understand and predict the climate over this region, it is necessary to investigate the influence of general circulation on the climate system over the ASA region of CEA. In this paper, recent progress in understanding the relationship between the general circulation and climate change over the ASA region is systematically reviewed. Previous studies have demonstrated that atmospheric circulation represents a significant factor in climate change over the ASA region of CEA. In the years with a strong East Asian summer monsoon, the water vapor flux increases and precipitation is abundant in the southeastern part of Northwest China. The opposite situation occurs in years when the East Asian summer monsoon is weak. With the weakening of the East Asian summer monsoon, the climate tends to dry over the semi-arid region located in the monsoon marginal zone. Recently, owing to the strengthening of the South Asian monsoon, more water vapor has been transported to the ASA region of Asia. The Plateau summer monsoon intensity and the precipitation in summer exhibit a significant positive correlation in Central Asia but a negative correlation in North China and Mongolia. A significant positive correlation also exists between the westerly index and the temperature over the arid region of CEA. The change in the westerly circulation may be the main factor affecting precipitation over the arid region of Central Asia.
基金supported by State Key Program of National Natural Science Foundation of China (Grant No. 40830957)Public Welfare Research Project of China (Grant No. GYHY200806021)
文摘The observation stations of Northern China are divided into three regions:the arid Northwest China,the Loess Plateau,and the cool Northeast China.The consistencies,differences,and associated mechanisms of land surface thermal-hydrologic processes among the three regions were studied based on the normalization of major variables of land surface thermal-hydrologic processes,using data collected during prevailing summer monsoon period(July and August,2008).It is shown that differences of surface thermal-hydrologic processes are remarkable among the three regions because of different impacts of summer monsoon.Especially their soil wet layers occur at different depths,and the average albedo and its diurnal variations are distinctly different.Surface net short-wave radiation in the Loess Plateau is close to that in the cool Northeast China,but its surface net long-wave radiation is close to that in the arid Northwest China.And the ratio of net radiation to global solar radiation in the cool Northeast China is higher than the other two regions,though its temperature is lower.There are obvious regional differences in the ratios of surface sensible and latent heat fluxes to net radiation for the three regions because of distinct contribution of sensible and latent heat fluxesto land surface energy balance.The three regions are markedly different in the ratio of water vapor flux to pan evaporation,but they are consistent in the ratio of water vapor flux to precipitation.These results not only indicate different influences of climate and environmental factors on land surface thermal-hydrologic processes in the three regions,but also show that summer monsoon is important in the formation and variation of the pattern of land surface thermal-hydrologic processes.