Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cott...Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cotton delta-12 oleate desat- urase gene GhFAD2-1 containing an open reading frame of 1 158 bp was cloned for constructing RNAi vector. A 515 bp long specific fragment of this gene was se- lected for constructing ihpRNA vector under the control of a seed-specific promoter NAPIN, named pFGC1008-NAPIN-FAD2-1; meanwhile miRNA gene-silencing vector pCAMBIA1302-amiRNA-FAD2-1 targeting GhFAD2-1 was also constructed.展开更多
Pretreatment is one of the most important steps in the production bioethanol from lignocellulose materials. Alkaline pretreatment is a common mean of pretreatment but microwave oven could assist its efficiency as it c...Pretreatment is one of the most important steps in the production bioethanol from lignocellulose materials. Alkaline pretreatment is a common mean of pretreatment but microwave oven could assist its efficiency as it can reduce the pretreatment time and improve the enzymatic activity during hydrolysis. The aim of this paper is to determine lignin removal from banana trunk using microwave-assisted alkaline (NaOH and NH4OH) pretreatments. The best pretreatment conditions were used for mass pretreatment before hydrolysis and fermentation. The result shows that, optimum lignin removal was with microwave-assisted NaOH pretreatment with the removal of up to 98% lignin at 2% (w/v (weight/volum)) sodium hydroxide, 170 W microwave power at 10 rain. Microwave-assisted ammonium hydroxide pretreatment achieved 97% lignin removal at 1% ammonium hydroxide concentration and 680 W microwave power at 5 min. Microwave- alkaline assisted pretreatment increased the yield and quality of fermentable sugar after enzyme hydrolysis with NH4OH and ammonium hydroxide yielding 40% and 39% of ethanol, respectively. This result reveals that, well controlled microwave- alkaline assisted pretreatment of banana trunk could effectively remove lignin and give high bioethanol yield.展开更多
In order to determine the role of alginate-derived oligosaccharides (ADO) in drought stress resistance of tomato (Ly-copersicon esculentum Miller) seedlings, the leaves were exposed to different concentrations of ADO ...In order to determine the role of alginate-derived oligosaccharides (ADO) in drought stress resistance of tomato (Ly-copersicon esculentum Miller) seedlings, the leaves were exposed to different concentrations of ADO (0.05%, 0.10%, 0.20%, 0.30% and 0.50%) after drought stress was simulated by exposing the roots to 0.6 molL-1 PEG-6000 solution for 6 h. Changes in biomass, electrolyte leakage and malondialdehyde (MDA), free proline, total soluble sugars (TSS) and abscisic acid (ABA), the enzyme activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and phenylalanine ammonia-lyase (PAL) were measured to investigate the effects of ADO treatment. The results showed that the treatment with an ADO concentration of 0.20% exhibited the highest performance of drought stress resistance in the tomato seedlings by decreasing the electrolyte leakage and the concentration of MDA, increasing the contents of free proline, TSS and ABA, and increasing the activities of CAT, SOD, POD and PAL after treatment with ADO. It is suggested that changes in electrolyte leakage, MDA, osmotic solutes, ABA, anti-oxidative enzyme and PAL activities were responsible for the increased drought stress resistance in tomato seedlings. To our best knowledge, this is the first report of the effect of ADO treatment on enhancing the drought stress resistance of tomato seedlings.展开更多
Modified Ca-based sorbents were obtained by adding sodium alkali into Ca(OH)2 and CaCO3. Reactive properties of modified Ca-based sorbents with acidic gases were investigated through reacting with gaseous HC1 at 450-...Modified Ca-based sorbents were obtained by adding sodium alkali into Ca(OH)2 and CaCO3. Reactive properties of modified Ca-based sorbents with acidic gases were investigated through reacting with gaseous HC1 at 450-760℃, and SEM and XRD technologies were adopted to get information on the reaction mechanism. Experimental data showed that HC1 dry removal efficiencies increased with temperature before 700℃ for all of the investigated sorbents, and there existed improved sorbents that corresponded to the highest removal efficiencies under the similar conditions. SEM photographs exhibited morphology difference between original and improved sorbents both before and after the reaction; and displayed that improved sorbents formed more porous product layers than original sorbents especially at higher temperature when product sintering became heavier, which is favorable to HC1 dry removal. XRD analysis showed that (1) improved Ca(OH)2 and CaCO3 were less crystalline than original lime and limestone; (2) the reaction product species of improved Ca(OH)2 changed with reaction temperature, while for original Ca(OH)2 the same product species appeared for all of the tested temperatures; and (3) for improved CaCO3, the only product at lower temperatures was CaCl2.2H2O and more product species were produced when temperature was higher than 650℃, but no CaCl2.Ca(OH)2.H2O formed at 700℃, while for the case of original CaCO3, the undesired CaCl2.Ca(OH)2.H2O appeared at 700℃. Presently, reaction temperature interval of 650-700℃ is recommended for improved Ca(OH2) to get the highest efficiency, for improved CaCO3 reaction at higher temperature deserves further investigation to make a good choice.展开更多
Global climate models have indicated high probability of drought occurrences in the coming future decades due to the impacts of climate change caused by a mass release of CO2. Thus, climate change regarding elevated a...Global climate models have indicated high probability of drought occurrences in the coming future decades due to the impacts of climate change caused by a mass release of CO2. Thus, climate change regarding elevated ambient CO2 and drought may consequently affect the growth of crops. In this study, plant physiology, soil carbon, and soil enzyme activities were measured to investigate the impacts of elevated C02 and drought stress on a Stagn[c Anthrosol planted with soybean (Glycine ma,z). Treatments of two CO2 levels, three soil moisture levels, and two soil cover types were established. The results indicated that elevated CO2 and drought stress significantly affected plant physiology. The inhibition of plant physiology by drought stress was mediated via prompted photosynthesis and water use efficiency under elevated CO2 conditions. Elevated CO2 resulted in a longer retention time of dissolved organic carbon (DOC) in soil, probably by improving the soil water effectiveness for organic decomposition and mineralization. Drought stress significantly decreased C:N ratio and microbial biomass carbon (MBC), but the interactive effects of drought stress and CO2 on them were not significant. Elevated CO2 induced an increase in invertase and catalase activities through stimulated plant root exudation. These results suggested that drought stress had significant negative impacts on plant physiology, soil carbon, and soil enzyme activities, whereas elevated CO2 and plant physiological feedbacks indirectly ameliorated these impacts.展开更多
文摘Delta-12 oleate desaturase gene (FAD2-1) which converts oleic acid into linoleic acid, is the key enzyme determining the fatty acid composition of cottonseed oil. By employing RT-PCR method, full length cDNA of cotton delta-12 oleate desat- urase gene GhFAD2-1 containing an open reading frame of 1 158 bp was cloned for constructing RNAi vector. A 515 bp long specific fragment of this gene was se- lected for constructing ihpRNA vector under the control of a seed-specific promoter NAPIN, named pFGC1008-NAPIN-FAD2-1; meanwhile miRNA gene-silencing vector pCAMBIA1302-amiRNA-FAD2-1 targeting GhFAD2-1 was also constructed.
文摘Pretreatment is one of the most important steps in the production bioethanol from lignocellulose materials. Alkaline pretreatment is a common mean of pretreatment but microwave oven could assist its efficiency as it can reduce the pretreatment time and improve the enzymatic activity during hydrolysis. The aim of this paper is to determine lignin removal from banana trunk using microwave-assisted alkaline (NaOH and NH4OH) pretreatments. The best pretreatment conditions were used for mass pretreatment before hydrolysis and fermentation. The result shows that, optimum lignin removal was with microwave-assisted NaOH pretreatment with the removal of up to 98% lignin at 2% (w/v (weight/volum)) sodium hydroxide, 170 W microwave power at 10 rain. Microwave-assisted ammonium hydroxide pretreatment achieved 97% lignin removal at 1% ammonium hydroxide concentration and 680 W microwave power at 5 min. Microwave- alkaline assisted pretreatment increased the yield and quality of fermentable sugar after enzyme hydrolysis with NH4OH and ammonium hydroxide yielding 40% and 39% of ethanol, respectively. This result reveals that, well controlled microwave- alkaline assisted pretreatment of banana trunk could effectively remove lignin and give high bioethanol yield.
基金supported by the National Natural Science Foundation of China (No. 30771646)Shandong Province Independent Innovation Project with the title of ‘Industrialization development of several special seaweeds biological products using integrated technologies’
文摘In order to determine the role of alginate-derived oligosaccharides (ADO) in drought stress resistance of tomato (Ly-copersicon esculentum Miller) seedlings, the leaves were exposed to different concentrations of ADO (0.05%, 0.10%, 0.20%, 0.30% and 0.50%) after drought stress was simulated by exposing the roots to 0.6 molL-1 PEG-6000 solution for 6 h. Changes in biomass, electrolyte leakage and malondialdehyde (MDA), free proline, total soluble sugars (TSS) and abscisic acid (ABA), the enzyme activities of catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and phenylalanine ammonia-lyase (PAL) were measured to investigate the effects of ADO treatment. The results showed that the treatment with an ADO concentration of 0.20% exhibited the highest performance of drought stress resistance in the tomato seedlings by decreasing the electrolyte leakage and the concentration of MDA, increasing the contents of free proline, TSS and ABA, and increasing the activities of CAT, SOD, POD and PAL after treatment with ADO. It is suggested that changes in electrolyte leakage, MDA, osmotic solutes, ABA, anti-oxidative enzyme and PAL activities were responsible for the increased drought stress resistance in tomato seedlings. To our best knowledge, this is the first report of the effect of ADO treatment on enhancing the drought stress resistance of tomato seedlings.
文摘Modified Ca-based sorbents were obtained by adding sodium alkali into Ca(OH)2 and CaCO3. Reactive properties of modified Ca-based sorbents with acidic gases were investigated through reacting with gaseous HC1 at 450-760℃, and SEM and XRD technologies were adopted to get information on the reaction mechanism. Experimental data showed that HC1 dry removal efficiencies increased with temperature before 700℃ for all of the investigated sorbents, and there existed improved sorbents that corresponded to the highest removal efficiencies under the similar conditions. SEM photographs exhibited morphology difference between original and improved sorbents both before and after the reaction; and displayed that improved sorbents formed more porous product layers than original sorbents especially at higher temperature when product sintering became heavier, which is favorable to HC1 dry removal. XRD analysis showed that (1) improved Ca(OH)2 and CaCO3 were less crystalline than original lime and limestone; (2) the reaction product species of improved Ca(OH)2 changed with reaction temperature, while for original Ca(OH)2 the same product species appeared for all of the tested temperatures; and (3) for improved CaCO3, the only product at lower temperatures was CaCl2.2H2O and more product species were produced when temperature was higher than 650℃, but no CaCl2.Ca(OH)2.H2O formed at 700℃, while for the case of original CaCO3, the undesired CaCl2.Ca(OH)2.H2O appeared at 700℃. Presently, reaction temperature interval of 650-700℃ is recommended for improved Ca(OH2) to get the highest efficiency, for improved CaCO3 reaction at higher temperature deserves further investigation to make a good choice.
基金supported by the National Natural Science Foundation of China (No.51309053)the Fundamental Research Funds for the Central Universities-Donghua University (DHU) Distinguished Young Professor Program, China (No.B201310)
文摘Global climate models have indicated high probability of drought occurrences in the coming future decades due to the impacts of climate change caused by a mass release of CO2. Thus, climate change regarding elevated ambient CO2 and drought may consequently affect the growth of crops. In this study, plant physiology, soil carbon, and soil enzyme activities were measured to investigate the impacts of elevated C02 and drought stress on a Stagn[c Anthrosol planted with soybean (Glycine ma,z). Treatments of two CO2 levels, three soil moisture levels, and two soil cover types were established. The results indicated that elevated CO2 and drought stress significantly affected plant physiology. The inhibition of plant physiology by drought stress was mediated via prompted photosynthesis and water use efficiency under elevated CO2 conditions. Elevated CO2 resulted in a longer retention time of dissolved organic carbon (DOC) in soil, probably by improving the soil water effectiveness for organic decomposition and mineralization. Drought stress significantly decreased C:N ratio and microbial biomass carbon (MBC), but the interactive effects of drought stress and CO2 on them were not significant. Elevated CO2 induced an increase in invertase and catalase activities through stimulated plant root exudation. These results suggested that drought stress had significant negative impacts on plant physiology, soil carbon, and soil enzyme activities, whereas elevated CO2 and plant physiological feedbacks indirectly ameliorated these impacts.