In order to utilize solar energy effectively and to achieve a higher electrical efficiency by limiting the operating temperature of the photovoltaic (PV) panel, a novel photovoltaic/thermal solar-assisted heat pump ...In order to utilize solar energy effectively and to achieve a higher electrical efficiency by limiting the operating temperature of the photovoltaic (PV) panel, a novel photovoltaic/thermal solar-assisted heat pump (PV/T-SAHP) system was proposed and constructed. The hybrid solar system generates electricity and thermal energy simultaneously. A distributed parameters model of the PWT-SAHP system was developed and applied to analyze the system dynamic performance in terms of PV action, photothermal action and Rankine cycle processes. The simulation results indicated that the coefficient of performance (COP) of the proposed PV/T-SAHP can be much better than that of the conventional heat pump. Both PV-efficiency and photothermic efficiency have been improved considerably. The results also showed that the performance of this PV/T-SAHP system was strongly influenced by the evaporator area, tube pitch and tilt angle of the PV/T evaporator, which are the key factors in PV/T-SAHP system optimization and PV/T evaporator design.展开更多
Water management is of great importance to maintain performance and durability of proton exchange membrane fuel cells. This paper presents a novel proton exchange membrane (PEM) fuel cell with a humidification zone in...Water management is of great importance to maintain performance and durability of proton exchange membrane fuel cells. This paper presents a novel proton exchange membrane (PEM) fuel cell with a humidification zone in the membrane electrode assembly (MEA) of each cell, in which the moisture of the cathode exhaust gas could transfer through the membrane to humidify anode or cathode dry gas. With a simple model, the relative humidity (RH) of the dry air exhaust from a membrane humidifier with 100% RH stream as a counter flow is calculated to be 60.0%, which is very close to the experimental result (62.2%). Fuel cell performances with hydrogen humidifying, air humidifying and no humidifying are compared at 50, 60 and 70°C and the results indicate that humidifying is necessary and the novel design with humidifying zone in MEA is effective to humidify dry reactants. The hydrogen humidifying shows better performance in short term, while water recovered is limited and the stability is not as good as air humidifying. It is recommended that both air and hydrogen should be humidified with proper design of the humidifying zones in MEA and plates.展开更多
Heat pump cycles have been widely applied to dryers for their high efficiency. However, low–efficiency electrical heaters are often used during early drying stage for frozen foods or winter since a standard heat pump...Heat pump cycles have been widely applied to dryers for their high efficiency. However, low–efficiency electrical heaters are often used during early drying stage for frozen foods or winter since a standard heat pump cycle cannot operate at low temperature. This study introduced cascade heat pumps replacing electrical heaters to improve dryer performance at low temperatures. Experiments were performed to examine changes in performance of the cascade heat pump dryers in relation to ambient temperature, low-stage cycle mass flow rate, and high-stage cycle mass flow rate. The results showed a significant improvement in low-temperature dryer performance with the introduction of cascade heat pump cycles.展开更多
基金the National Natural Science Foundation ofChina (No. 50708105)partly supported by the Natural ScienceFoundation of Anhui Province (No. 070414161), China
文摘In order to utilize solar energy effectively and to achieve a higher electrical efficiency by limiting the operating temperature of the photovoltaic (PV) panel, a novel photovoltaic/thermal solar-assisted heat pump (PV/T-SAHP) system was proposed and constructed. The hybrid solar system generates electricity and thermal energy simultaneously. A distributed parameters model of the PWT-SAHP system was developed and applied to analyze the system dynamic performance in terms of PV action, photothermal action and Rankine cycle processes. The simulation results indicated that the coefficient of performance (COP) of the proposed PV/T-SAHP can be much better than that of the conventional heat pump. Both PV-efficiency and photothermic efficiency have been improved considerably. The results also showed that the performance of this PV/T-SAHP system was strongly influenced by the evaporator area, tube pitch and tilt angle of the PV/T evaporator, which are the key factors in PV/T-SAHP system optimization and PV/T evaporator design.
基金Supported by the National High Technology Research and Development Program of China (2008AA05Z104)
文摘Water management is of great importance to maintain performance and durability of proton exchange membrane fuel cells. This paper presents a novel proton exchange membrane (PEM) fuel cell with a humidification zone in the membrane electrode assembly (MEA) of each cell, in which the moisture of the cathode exhaust gas could transfer through the membrane to humidify anode or cathode dry gas. With a simple model, the relative humidity (RH) of the dry air exhaust from a membrane humidifier with 100% RH stream as a counter flow is calculated to be 60.0%, which is very close to the experimental result (62.2%). Fuel cell performances with hydrogen humidifying, air humidifying and no humidifying are compared at 50, 60 and 70°C and the results indicate that humidifying is necessary and the novel design with humidifying zone in MEA is effective to humidify dry reactants. The hydrogen humidifying shows better performance in short term, while water recovered is limited and the stability is not as good as air humidifying. It is recommended that both air and hydrogen should be humidified with proper design of the humidifying zones in MEA and plates.
基金supported by Basic Science Research Program through the National Research Foundation of Korea
文摘Heat pump cycles have been widely applied to dryers for their high efficiency. However, low–efficiency electrical heaters are often used during early drying stage for frozen foods or winter since a standard heat pump cycle cannot operate at low temperature. This study introduced cascade heat pumps replacing electrical heaters to improve dryer performance at low temperatures. Experiments were performed to examine changes in performance of the cascade heat pump dryers in relation to ambient temperature, low-stage cycle mass flow rate, and high-stage cycle mass flow rate. The results showed a significant improvement in low-temperature dryer performance with the introduction of cascade heat pump cycles.