The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model...The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model of traumatic brain injury following ADMSC transplantation via the tail vein. Cell transplants were observed in injured cerebral cortex, and expression of brain-derived nerve growth factor was significantly increased in the injured hippocampus following transplantation. Results demonstrated that transvenous ADMSC transplants migrated to the injured cerebral cortex and significantly improved cognitive function.展开更多
Objective:To explore the mechanism of Buyang Huanwu Tang (补阳还五汤 Decoction Invigorating Yang for Recuperation) combined with bone marrow mesenchymal stem cells (MSCs) transplantation in protecting nerves of cerebr...Objective:To explore the mechanism of Buyang Huanwu Tang (补阳还五汤 Decoction Invigorating Yang for Recuperation) combined with bone marrow mesenchymal stem cells (MSCs) transplantation in protecting nerves of cerebral ischemic injury. Methods: Local cerebral ischemia-reperfusion rat model was established with modified Zea-Longa thread-occlusion method, and MSCs were injected into the caudal vein, and Buyang Huanwu Tang(补阳还五汤)was administrated. Vascular endothelial growth factor (VEGF) and Ki-67 expression in the ischemic side of the brain in the cerebral ischemic-reperfusion rat were detected with immuno-histochemical staining method. Results: VEGF and Ki-67 expressions were significantly up-regulated in the MSCs group and the combination group, with significant differences as compared with the model group and the sham operation group (P<0.05), and with the most strongest effect in the combination group. Conclusion: Buyang Huanwu Tang(补阳还五汤)combined with MSCs transplantation repairs the injured blood vessels and lesion tissues possibly by up-regulation of VEGF and Ki-67 expression.展开更多
OBJECTIVE:To determine the effects of human umbilical cord mesenchymal stem cell (UCMSC) transplantation, alone or in combination with tanshi- none IIA (Tan ⅡA) on hepatic cirrhosis in rats. METHODS: A rat mode...OBJECTIVE:To determine the effects of human umbilical cord mesenchymal stem cell (UCMSC) transplantation, alone or in combination with tanshi- none IIA (Tan ⅡA) on hepatic cirrhosis in rats. METHODS: A rat model of cirrhosis was established. Rats were divided into control, UCMSC, and UCSMC plus Tan IIA groups. Rats in the UCMSC group were injected via the tail vein with 0.2 mL Dil-labeled UCMSC suspension. Intraperitoneal Tan ⅡA injections (20 mg/kg) were started on the day of UCMSC transplantation in the UCMSC plus Tan IIA group, and continued for 7 consecutive days thereafter. Rats were sacrificed 1 day, 3 days, 1 month, and 3 months after transplantation and the numbers of Dil-labeled UCMSCs colonizing the liver were determined. Albumin (ALB) and alanine aminotransferase (ALT) levels were measured in venous blood, and mRNA and protein expression lev- els of human ALB and cytokeratin (CK)-18 in liver tissues were determined by reverse transcrip- tion-polymerase chain reaction and western blotting, respectively.RESULTS: Serum ALT levels were significantly lower and serum ALB levels significantly higher in rats in the UCMSC group compared with the control group (P 〈 0.05). Hepatic CK-18 and ALB mRNA and protein expression levels increased after transplantation, and were significantly higher in the UCMSC plus Tan ⅡA group compared with the UCMSC group (P 〈 0.05).CONCLUSION: Human UCMSCs transplanted into rats with liver cirrhosis can grow and differentiate into hepatocyte-like cells resulting in improved liver function in vivo. Tan ⅡA further influenced transplantation outcomes.展开更多
Objective:To label rat bone marrow mesenchymal stem cells (BMSCs) with superparamagnetic iron oxide (SPIO) in vitro, and to monitor the survival and location of these labeled BMSCs in a rat model of traumatic bra...Objective:To label rat bone marrow mesenchymal stem cells (BMSCs) with superparamagnetic iron oxide (SPIO) in vitro, and to monitor the survival and location of these labeled BMSCs in a rat model of traumatic brain injury (TBI) by susceptibility weighted imaging (SWI)sequence.Methods:BMSCs were cultured in vitro and then labeled with SPIO. Totally 24 male Sprague Dawley (SD) rats weighing 200-250 g were randomly divided into 4 groups: Groups A-D (n=6 for each group). Moderate TBI models of all the rats were developed in the left hemisphere following Feeney's method. Group A was the experimental group and stereotaxic transplantation of BMSCs labeled with SPIO into the region nearby the contusion was conducted in this group 24 hours after TBI modeling. The other three groups were control groups with transplantation of SPIO, unlabeled BMSCs and injection of nutrient solution respectively conducted in Groups B, C and D at the same time. Monitoring of these SPIO-labeled BMSCs by SWI was performed one day,one week and three weeks after implantation.Results: Numerous BMSCs were successfully labeled with SPIO. They were positive for Prussian blue staining and intracytoplasm positive blue stained particles were found under a microscope (×200). Scattered little iron particles were observed in the vesicles by electron microscopy (×5000). MRI of the transplantation sites of the left hemisphere demonstrated a low signal intensity on magnitude images,phase images and SWI images for all the test rats in Group A, and the lesion in the left parietal cortex demonstrated a semicircular low intensity on SWI images, which clearly showed the distribution and migration of BMSCs in the first and third weeks. For Group B, a low signal intensity by MRI was only observed on the first day but undetected during the following examination. No signals were observed in Groups C and D at any time points.Conclusion:SWI sequence in vivo can consecutively and noninvasively trace and demonstrate the status and distribution of BMSCs labeled with SPIO in the brain of TBI model rats.展开更多
基金the National Basic Research Program of China(973Program),No.2007CB512705the General Program for Youths of the National Natural Science Foundation of China,No.30801464
文摘The effects of adipose-derived mesenchymal stem cell (ADMSC) transplantation for the repair of traumatic brain injury remain poorly understood. The present study observed neurological functional changes in a rat model of traumatic brain injury following ADMSC transplantation via the tail vein. Cell transplants were observed in injured cerebral cortex, and expression of brain-derived nerve growth factor was significantly increased in the injured hippocampus following transplantation. Results demonstrated that transvenous ADMSC transplants migrated to the injured cerebral cortex and significantly improved cognitive function.
基金supported by Henan Province Higher Learning Institution Outstanding Scientific Research Talent Innovation Engineering Project (2007KYCX007)Henan Province Outstanding Youth Project (08100510015)
文摘Objective:To explore the mechanism of Buyang Huanwu Tang (补阳还五汤 Decoction Invigorating Yang for Recuperation) combined with bone marrow mesenchymal stem cells (MSCs) transplantation in protecting nerves of cerebral ischemic injury. Methods: Local cerebral ischemia-reperfusion rat model was established with modified Zea-Longa thread-occlusion method, and MSCs were injected into the caudal vein, and Buyang Huanwu Tang(补阳还五汤)was administrated. Vascular endothelial growth factor (VEGF) and Ki-67 expression in the ischemic side of the brain in the cerebral ischemic-reperfusion rat were detected with immuno-histochemical staining method. Results: VEGF and Ki-67 expressions were significantly up-regulated in the MSCs group and the combination group, with significant differences as compared with the model group and the sham operation group (P<0.05), and with the most strongest effect in the combination group. Conclusion: Buyang Huanwu Tang(补阳还五汤)combined with MSCs transplantation repairs the injured blood vessels and lesion tissues possibly by up-regulation of VEGF and Ki-67 expression.
基金Supported by Medical Science Research Project,Department of Health of Jiangsu Province(No.H201007)the Natural Science Foundation of Jiangsu Province(No.BK2012481)
文摘OBJECTIVE:To determine the effects of human umbilical cord mesenchymal stem cell (UCMSC) transplantation, alone or in combination with tanshi- none IIA (Tan ⅡA) on hepatic cirrhosis in rats. METHODS: A rat model of cirrhosis was established. Rats were divided into control, UCMSC, and UCSMC plus Tan IIA groups. Rats in the UCMSC group were injected via the tail vein with 0.2 mL Dil-labeled UCMSC suspension. Intraperitoneal Tan ⅡA injections (20 mg/kg) were started on the day of UCMSC transplantation in the UCMSC plus Tan IIA group, and continued for 7 consecutive days thereafter. Rats were sacrificed 1 day, 3 days, 1 month, and 3 months after transplantation and the numbers of Dil-labeled UCMSCs colonizing the liver were determined. Albumin (ALB) and alanine aminotransferase (ALT) levels were measured in venous blood, and mRNA and protein expression lev- els of human ALB and cytokeratin (CK)-18 in liver tissues were determined by reverse transcrip- tion-polymerase chain reaction and western blotting, respectively.RESULTS: Serum ALT levels were significantly lower and serum ALB levels significantly higher in rats in the UCMSC group compared with the control group (P 〈 0.05). Hepatic CK-18 and ALB mRNA and protein expression levels increased after transplantation, and were significantly higher in the UCMSC plus Tan ⅡA group compared with the UCMSC group (P 〈 0.05).CONCLUSION: Human UCMSCs transplanted into rats with liver cirrhosis can grow and differentiate into hepatocyte-like cells resulting in improved liver function in vivo. Tan ⅡA further influenced transplantation outcomes.
文摘Objective:To label rat bone marrow mesenchymal stem cells (BMSCs) with superparamagnetic iron oxide (SPIO) in vitro, and to monitor the survival and location of these labeled BMSCs in a rat model of traumatic brain injury (TBI) by susceptibility weighted imaging (SWI)sequence.Methods:BMSCs were cultured in vitro and then labeled with SPIO. Totally 24 male Sprague Dawley (SD) rats weighing 200-250 g were randomly divided into 4 groups: Groups A-D (n=6 for each group). Moderate TBI models of all the rats were developed in the left hemisphere following Feeney's method. Group A was the experimental group and stereotaxic transplantation of BMSCs labeled with SPIO into the region nearby the contusion was conducted in this group 24 hours after TBI modeling. The other three groups were control groups with transplantation of SPIO, unlabeled BMSCs and injection of nutrient solution respectively conducted in Groups B, C and D at the same time. Monitoring of these SPIO-labeled BMSCs by SWI was performed one day,one week and three weeks after implantation.Results: Numerous BMSCs were successfully labeled with SPIO. They were positive for Prussian blue staining and intracytoplasm positive blue stained particles were found under a microscope (×200). Scattered little iron particles were observed in the vesicles by electron microscopy (×5000). MRI of the transplantation sites of the left hemisphere demonstrated a low signal intensity on magnitude images,phase images and SWI images for all the test rats in Group A, and the lesion in the left parietal cortex demonstrated a semicircular low intensity on SWI images, which clearly showed the distribution and migration of BMSCs in the first and third weeks. For Group B, a low signal intensity by MRI was only observed on the first day but undetected during the following examination. No signals were observed in Groups C and D at any time points.Conclusion:SWI sequence in vivo can consecutively and noninvasively trace and demonstrate the status and distribution of BMSCs labeled with SPIO in the brain of TBI model rats.