A method of unstructured dynamic overset grids is developed for the numerical simulation of helicopter unsteady rotorairframe aerodynamic interaction.For the effective treatment of the relative motion between the roto...A method of unstructured dynamic overset grids is developed for the numerical simulation of helicopter unsteady rotorairframe aerodynamic interaction.For the effective treatment of the relative motion between the rotor and the airframe,the domain of flowfield is divided into two overset subzones,namely,a rotational subzone containing the blades and a stationary subzone containing the airframe.The overset part of two subzones is used to convect the flow variables of the two zones.The Taylor series expansion is used to obtain a second-order spatial accuracy,and dual-time stepping is adopted to improve the solution accuracy.Mesh deformation from the blade motion in forward flight is treated by using a spring analogy.Validation is made by numerically simulating the flows around a wind tunnel configuration and comparing the predicted time-averaged and instantaneous inflow and airframe surface pressure distributions with the experimental data.It shows that the present method is efficient and robust for the prediction of complicated unsteady rotor-airframe aerodynamic interaction phenomena.展开更多
基金supported by the Basic Research Program of Northwestern Polytechnical University (Grant No. JC201219)the Postdoctoral Science Foundation of China (Grant No. 20100481368)
文摘A method of unstructured dynamic overset grids is developed for the numerical simulation of helicopter unsteady rotorairframe aerodynamic interaction.For the effective treatment of the relative motion between the rotor and the airframe,the domain of flowfield is divided into two overset subzones,namely,a rotational subzone containing the blades and a stationary subzone containing the airframe.The overset part of two subzones is used to convect the flow variables of the two zones.The Taylor series expansion is used to obtain a second-order spatial accuracy,and dual-time stepping is adopted to improve the solution accuracy.Mesh deformation from the blade motion in forward flight is treated by using a spring analogy.Validation is made by numerically simulating the flows around a wind tunnel configuration and comparing the predicted time-averaged and instantaneous inflow and airframe surface pressure distributions with the experimental data.It shows that the present method is efficient and robust for the prediction of complicated unsteady rotor-airframe aerodynamic interaction phenomena.