AIM: To determine the effect of hammerhead ribozyme targeting connective tissue growth factor (CCN2) on human hepatic stellate cell (HSC) function.METHODS: CCN2 hammerhead ribozyme cDNA plus two self-cleaving se...AIM: To determine the effect of hammerhead ribozyme targeting connective tissue growth factor (CCN2) on human hepatic stellate cell (HSC) function.METHODS: CCN2 hammerhead ribozyme cDNA plus two self-cleaving sequences were inserted into pTriEx2 to produce pTriCCN2-Rz. Each vector was individually transfected into cultured LX-2 human HSCs, which were then stimulated by addition of transforming growth factor (TGF)-β1 to the culture medium. Semiquantitative RT-PCR was used to determine mRNA levels for CCN2 or collagen I, while protein levels of each molecule in cell /ysates and conditioned medium were measured by ELISA. Cell-cycle progression of the transfected cells was assessed by flow cytometry.RESULTS: In pTriEx2-transfected LX-2 cells, TGF-β1 treatment caused an increase in the mRNA level for CCN2 or collagen I, and an increase in produced and secreted CCN2 or extracellular collagen I protein levels, pTriCCN2-Rz-transfected LX-2 cells showed decreased basal CCN2 or collagen mRNA levels, as well as produced and secreted CCN2 or collagen I protein. Furthermore, the TGF-β1-induced increase in mRNA or protein for CCN2 or collagen I was inhibited partially in pTriCCN2-Rz-transfected LX-2 cells. Inhibition of CCN2 using hammerhead ribozyme cDNA resulted in fewer of the cells transitioning into S phase.CONCLUSION: Endogenous CCN2 is a mediator of basal or TGF-β1-induced collagen I production in human HSCs and regulates entry of the cells into S phase.展开更多
基金Supported by National Natural Scientific Foundation No.30872236 to Run-Ping Gao and NIH 5R01AA016003 to David R Brigstock
文摘AIM: To determine the effect of hammerhead ribozyme targeting connective tissue growth factor (CCN2) on human hepatic stellate cell (HSC) function.METHODS: CCN2 hammerhead ribozyme cDNA plus two self-cleaving sequences were inserted into pTriEx2 to produce pTriCCN2-Rz. Each vector was individually transfected into cultured LX-2 human HSCs, which were then stimulated by addition of transforming growth factor (TGF)-β1 to the culture medium. Semiquantitative RT-PCR was used to determine mRNA levels for CCN2 or collagen I, while protein levels of each molecule in cell /ysates and conditioned medium were measured by ELISA. Cell-cycle progression of the transfected cells was assessed by flow cytometry.RESULTS: In pTriEx2-transfected LX-2 cells, TGF-β1 treatment caused an increase in the mRNA level for CCN2 or collagen I, and an increase in produced and secreted CCN2 or extracellular collagen I protein levels, pTriCCN2-Rz-transfected LX-2 cells showed decreased basal CCN2 or collagen mRNA levels, as well as produced and secreted CCN2 or collagen I protein. Furthermore, the TGF-β1-induced increase in mRNA or protein for CCN2 or collagen I was inhibited partially in pTriCCN2-Rz-transfected LX-2 cells. Inhibition of CCN2 using hammerhead ribozyme cDNA resulted in fewer of the cells transitioning into S phase.CONCLUSION: Endogenous CCN2 is a mediator of basal or TGF-β1-induced collagen I production in human HSCs and regulates entry of the cells into S phase.