The dynamic changes of land system in Huang - Huai - Hai Plain between 1988 and 2000 were researched in this paper. Spatial dominance econometric model was estabilished on 1 km cell to quantificafionally analyze the d...The dynamic changes of land system in Huang - Huai - Hai Plain between 1988 and 2000 were researched in this paper. Spatial dominance econometric model was estabilished on 1 km cell to quantificafionally analyze the driving-force for the dynamic change mechanism of land system, such as natural, social and economic factors. The future dynamic changes of land system in Huang - Huai - Hai Plain on each 1 km cell during 2000 to 2020 were stimulated by combining the dynamic changes of land system on each 1 km cell with different situations. The research indicated that the dynamic changes of land system structure changed mainly from the cultivated areas to building areas and industrial areas, and forest areas increased during this period. Although the revolutions of land system structure were different during 2000 to 2020 with the different referrence standard, ecological protection and economic development, the primary dynamic changes of land system structure were that the increase of building land areas with the decline cuhivaled land areas and the increase of woodlands.展开更多
Based on historical data and field investigation, some major fluxes and reserves of carbon were estimated, and a tentative analysis of the soil carbon balance was made in a native grassland community in the Xilin Rive...Based on historical data and field investigation, some major fluxes and reserves of carbon were estimated, and a tentative analysis of the soil carbon balance was made in a native grassland community in the Xilin River basin of Inner Mongolia. Major results were reported as follows: 1) Annual average carbon input from above-ground biomass production was 79.8 g C(.)m(-2.)a(-1), and from root biomass to 30 cm. depth averaged 311.9 g C(.)m(-2.)a(-1). The summed mean annual carbon input of shoot and root materials in the study site was approximately 391.7 g C(.)m(-2.)a(-1). 2) The annual amount of above-ground biomass consumed by insects averaged 14.7 g C(.)m(-2.)a(-1), and the carbon output by leaching or light-chemical oxidation was 3.2 g C(.)m(-2.)a(-1) The annual evolution rate of CO2 from net soil respiration averaged 346.9 g C(.)m(-2.)a(-1), and the summed mean annual output was approximately 364.8 g C(.)m(-2.)a(-1). 3) A mature, steady-state system could be assumed for the community for which growth and decay were approximately in balance, with a net carbon accumulation of about 26.9 g C(.)m(-2.)a(-1). Based on the soil organic carbon density of the field, the turnover Irate of soil carbon in 0 - 30 cm depth was calculated to be 6.2%, with a turnover time of 16 years.展开更多
In order to illustrate the change of nitrogen (N) supply capacity after long-term application of manure and chemical fertilizer, as well as to properly manage soil fertility through fertilizer application under the ...In order to illustrate the change of nitrogen (N) supply capacity after long-term application of manure and chemical fertilizer, as well as to properly manage soil fertility through fertilizer application under the soil-climatic conditions of the North China Plain, organic N forms were quantified in the topsoil with different manure and chemical fertilizer treatments in a 15-year fertilizer experiment in a Chinese calcareous alluvial soil. Soil total N (TN) and various organic N forms were significantly influenced by long-term application of chemical fertilizer and manure. TN, total hydrolysable N, acid-lnsoluble N, amino acid N and ammonium N in the soil increased significantly (P 〈 0.05) with increasing manure and fertilizer N rates, but were not influenced by increasing P rates. Also, application of manure or N fertilizer or P fertilizer did not significantly influence either the quantity of amino sugar N or its proportion of TN. Application of manure significantly increased (P 〈 0.05) hydrolysable unknown N, but adding N or P did not. In addition, application of manure or N fertilizer or P fertilizer did not significantly influence the proportions of different soil organic N forms.展开更多
In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different...In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different land uses on soil labile organic carbon,soils of Calamagrostis angustifolia wetland,Carex lasiocarpa wetland,dry farmland,paddy field,forest land and abandoned cultivated land were collected for measuring the contents of soil microbial biomass carbon (MBC),dissolved organic carbon (DOC),readily oxidizable carbon (ROC) and carbohydrate carbon (CHC). The results show that soil organic carbon contents follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland. The contents of MBC and DOC in Calamagrostis angustifolia and Carex lasiocarpa wetlands are significantly higher than those in other land use types. The contents of CHC and ROC are the highest in Calamagrostis angustifolia wetland and the lowest in dry farmland. The contents of all the labile organic carbon increase along with the years of abandonment of cultivated land. The ratios of MBC,DOC and ROC to SOC also follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland,while the ratio of CHC to SOC is paddy field>forest field>Carex lasiocarpa wetland>Carex lasiocarpa wetland>dry farmland. When natural wetlands were cultivated,the activity of soil organic carbon tends to reduce in some extent due to the disappearance of heterotrophic environment and the reduction of vegetation residue. Thus,the abandonment of cultivated land is an effective way for restoring soil organic carbon.展开更多
Soil environment in Sanjiang Plain has changed greatly because of the reclamation on a large scale.The physical and chemical properties of soil have changed, and soil erosion, soil saline-alkalization and soil polluti...Soil environment in Sanjiang Plain has changed greatly because of the reclamation on a large scale.The physical and chemical properties of soil have changed, and soil erosion, soil saline-alkalization and soil pollution occurred in some areas. These problems have obstructed the sustainable development of agriculture. For the sustainable use of soils in Sanjiang Plain, in this paper we raise some suggestions and countermeasures which might be references for experts and departments concerned.展开更多
Litter decomposition is the key process in nutrient recycling and energy flow. The present study examined the impacts of soil fauna on decomposition rates and nutrient fluxes at three succession stages of wetland in t...Litter decomposition is the key process in nutrient recycling and energy flow. The present study examined the impacts of soil fauna on decomposition rates and nutrient fluxes at three succession stages of wetland in the Sanjiang Plain, China using different mesh litterbags. The results show that in each succession stage of wetland, soil fauna can obviously increase litter decomposition rates. The average contribution of whole soil fauna to litter mass loss was 35.35%. The more complex the soil fauna group, the more significant the role of soil fauna. The average loss of three types of litter in the 4mm mesh litterbags was 0.3-4. l times that in 0.058ram ones. The decomposition function of soil fauna to litter mass changed with the wetland succession. The average contribution of soil fauna to litter loss firstly decreased from 34.96% (Carex lasiocapa) to 32.94% (Carex rneyeriana), then increased to 38.16% (Calamagrostics angustifolia). The contributions of soil fauna to litter decomposition rates vary according to the litter substrata, soil fauna communities and seasons. Significant effects were respectively found in August and July on C. angustifolia and C. lasiocapa, while in June and August on C. meyeriana. Total carbon (TC), total nitrogen (TN) and total phosphorus (TP) contents and the C/N and C/P ratios of decaying litter can be influenced by soil fauna. At different wetland succession stages, the effects of soil fauna on nutrient elements also differ greatly, which shows the significant difference of in- fluencing element types and degrees. Soil fauna communities strongly influenced the TC and TP concentrations of C. meyeriana litter, and TP content of C. lasiocapa. Our results indicate that soil fauna have important effects on litter decomposition and this influence will vary with the wetland succession and seasonal variation.展开更多
The Songnen Plain has a typical soda-saline soil, which often shrinks and cracks under natural conditions during water evaporation. This study aims to analyze the relationships between the crack characteristics and th...The Songnen Plain has a typical soda-saline soil, which often shrinks and cracks under natural conditions during water evaporation. This study aims to analyze the relationships between the crack characteristics and the soil properties of soda-saline soils quantitatively, and attempts to establish prediction models for the main soil properties of soda-saline soils based on the results. In order to achieve these objectives, a desiccation cracking test was conducted using 17 soil specimens with different salinity levels under controlled laboratory conditions. Correlation analysis was then performed between the crack characteristics and the soil properties. The results indicate that the crack characteristics can well represent the surface appearances of cracked soils, they also can well distinguish the salinity levels of soda-saline soils while the clay contents and mineralogical compositions of soils are stable. Among the crack characteristics, crack length has the best relationships with the salinity levels of soda-saline soils. Specifically, the crack length has high correlation(R2 > 0.87) with the electrical conductivity(EC), Na+, CO32– and the salinity, it also has reasonable relationship(R2 > 0.68) with HCO3–, this indicates crack length can be well used for the prediction of these properties of soda-saline soils.展开更多
Methane (CH4) and carbon dioxide (CO2) emission was measured from mires in the Sanjiang Plain, Northeast China, by using a static chamber technique during free snow-covered periods. The seasonal mean emission of CH4 w...Methane (CH4) and carbon dioxide (CO2) emission was measured from mires in the Sanjiang Plain, Northeast China, by using a static chamber technique during free snow-covered periods. The seasonal mean emission of CH4 was 12.4mg/(m2·h) and the emission range of CO2 was 8.7-16.6g/(m2·d) (gross CO2 flux) during plant growth period. CO2 emission rate in the day was stronger than that at night, and the daily peak appears at 19:00. The mire plants in the Sanjiang Plain begin to sprout at the end of April. The aboveground biomass of the mire plants increased from zero to the peak from July to September and showed single peak form. The aboveground biomass of Carex lasiocarpa (464.8g/m2) was lower than that of Deyeuxia platyphylla (530.8g/m2), but the underground biomass was higher than that of Deyeuxia platyphylla. Gross CO2 flux showed the significance positive correlation relationship with plant biomass. Gross CO2 flux and CH4 emission were also correlated with soil temperature (0-5cm) and water temperature. However, the highest CH4 emission rate lagged behind the highest soil temperature in the root area during plant growth period. The data also indicated that wet and warm conditions during the early spring led to greater value of CH4 emission flux. Inundation is the necessary condition for the existence of methane bacteria, but there is no significant positive correlation between the inundation depth and CH4 emission rate in this region. Within the same growing season and under the same inundation condition, the variations of CH4 emission rate could be markedly different.展开更多
基金Supported by the National Natural Science Foundation of China(70503025)the Knowledge Innovation Project of Chinese Academy of Sci-ences(KZCX2-YW-305-2+3 种基金KSCX2-YW-N-039)the National Project of Scientific and Technical Supporting Programs(2006BAC08B032006BAC08B06)international cooperation program of science and technolo-gy ministry(2006DFB919201).~~
文摘The dynamic changes of land system in Huang - Huai - Hai Plain between 1988 and 2000 were researched in this paper. Spatial dominance econometric model was estabilished on 1 km cell to quantificafionally analyze the driving-force for the dynamic change mechanism of land system, such as natural, social and economic factors. The future dynamic changes of land system in Huang - Huai - Hai Plain on each 1 km cell during 2000 to 2020 were stimulated by combining the dynamic changes of land system on each 1 km cell with different situations. The research indicated that the dynamic changes of land system structure changed mainly from the cultivated areas to building areas and industrial areas, and forest areas increased during this period. Although the revolutions of land system structure were different during 2000 to 2020 with the different referrence standard, ecological protection and economic development, the primary dynamic changes of land system structure were that the increase of building land areas with the decline cuhivaled land areas and the increase of woodlands.
文摘Based on historical data and field investigation, some major fluxes and reserves of carbon were estimated, and a tentative analysis of the soil carbon balance was made in a native grassland community in the Xilin River basin of Inner Mongolia. Major results were reported as follows: 1) Annual average carbon input from above-ground biomass production was 79.8 g C(.)m(-2.)a(-1), and from root biomass to 30 cm. depth averaged 311.9 g C(.)m(-2.)a(-1). The summed mean annual carbon input of shoot and root materials in the study site was approximately 391.7 g C(.)m(-2.)a(-1). 2) The annual amount of above-ground biomass consumed by insects averaged 14.7 g C(.)m(-2.)a(-1), and the carbon output by leaching or light-chemical oxidation was 3.2 g C(.)m(-2.)a(-1) The annual evolution rate of CO2 from net soil respiration averaged 346.9 g C(.)m(-2.)a(-1), and the summed mean annual output was approximately 364.8 g C(.)m(-2.)a(-1). 3) A mature, steady-state system could be assumed for the community for which growth and decay were approximately in balance, with a net carbon accumulation of about 26.9 g C(.)m(-2.)a(-1). Based on the soil organic carbon density of the field, the turnover Irate of soil carbon in 0 - 30 cm depth was calculated to be 6.2%, with a turnover time of 16 years.
基金Project supported by the National Natural Science Foundation of China (Nos. 30390080 and 30370287).
文摘In order to illustrate the change of nitrogen (N) supply capacity after long-term application of manure and chemical fertilizer, as well as to properly manage soil fertility through fertilizer application under the soil-climatic conditions of the North China Plain, organic N forms were quantified in the topsoil with different manure and chemical fertilizer treatments in a 15-year fertilizer experiment in a Chinese calcareous alluvial soil. Soil total N (TN) and various organic N forms were significantly influenced by long-term application of chemical fertilizer and manure. TN, total hydrolysable N, acid-lnsoluble N, amino acid N and ammonium N in the soil increased significantly (P 〈 0.05) with increasing manure and fertilizer N rates, but were not influenced by increasing P rates. Also, application of manure or N fertilizer or P fertilizer did not significantly influence either the quantity of amino sugar N or its proportion of TN. Application of manure significantly increased (P 〈 0.05) hydrolysable unknown N, but adding N or P did not. In addition, application of manure or N fertilizer or P fertilizer did not significantly influence the proportions of different soil organic N forms.
基金Under the auspices of National Natural Science Foundation of China (No. 30470340)
文摘In the Sanjiang Plain,Northeast China,the natural wetland is undergoing a rapid conversion into agricultural land,which has resulted in drastic ecological changes in the region. To investigate the effects of different land uses on soil labile organic carbon,soils of Calamagrostis angustifolia wetland,Carex lasiocarpa wetland,dry farmland,paddy field,forest land and abandoned cultivated land were collected for measuring the contents of soil microbial biomass carbon (MBC),dissolved organic carbon (DOC),readily oxidizable carbon (ROC) and carbohydrate carbon (CHC). The results show that soil organic carbon contents follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland. The contents of MBC and DOC in Calamagrostis angustifolia and Carex lasiocarpa wetlands are significantly higher than those in other land use types. The contents of CHC and ROC are the highest in Calamagrostis angustifolia wetland and the lowest in dry farmland. The contents of all the labile organic carbon increase along with the years of abandonment of cultivated land. The ratios of MBC,DOC and ROC to SOC also follow the order: Carex lasiocarpa wetland>Calamagrostis angustifolia wetland>forest land>paddy field>dry farmland,while the ratio of CHC to SOC is paddy field>forest field>Carex lasiocarpa wetland>Carex lasiocarpa wetland>dry farmland. When natural wetlands were cultivated,the activity of soil organic carbon tends to reduce in some extent due to the disappearance of heterotrophic environment and the reduction of vegetation residue. Thus,the abandonment of cultivated land is an effective way for restoring soil organic carbon.
文摘Soil environment in Sanjiang Plain has changed greatly because of the reclamation on a large scale.The physical and chemical properties of soil have changed, and soil erosion, soil saline-alkalization and soil pollution occurred in some areas. These problems have obstructed the sustainable development of agriculture. For the sustainable use of soils in Sanjiang Plain, in this paper we raise some suggestions and countermeasures which might be references for experts and departments concerned.
基金Under the auspices of State Key Development Program for Basic Research of China (No. 2009CB421103)KeyProgram of National Natural Science Foundation of China (No. 40830535/D0101)Knowledge Innovation Programs of ChineseAcademy of Sciences (No. KZCX2-YW-BR-16, KSCX2-YW-N-46-06)
文摘Litter decomposition is the key process in nutrient recycling and energy flow. The present study examined the impacts of soil fauna on decomposition rates and nutrient fluxes at three succession stages of wetland in the Sanjiang Plain, China using different mesh litterbags. The results show that in each succession stage of wetland, soil fauna can obviously increase litter decomposition rates. The average contribution of whole soil fauna to litter mass loss was 35.35%. The more complex the soil fauna group, the more significant the role of soil fauna. The average loss of three types of litter in the 4mm mesh litterbags was 0.3-4. l times that in 0.058ram ones. The decomposition function of soil fauna to litter mass changed with the wetland succession. The average contribution of soil fauna to litter loss firstly decreased from 34.96% (Carex lasiocapa) to 32.94% (Carex rneyeriana), then increased to 38.16% (Calamagrostics angustifolia). The contributions of soil fauna to litter decomposition rates vary according to the litter substrata, soil fauna communities and seasons. Significant effects were respectively found in August and July on C. angustifolia and C. lasiocapa, while in June and August on C. meyeriana. Total carbon (TC), total nitrogen (TN) and total phosphorus (TP) contents and the C/N and C/P ratios of decaying litter can be influenced by soil fauna. At different wetland succession stages, the effects of soil fauna on nutrient elements also differ greatly, which shows the significant difference of in- fluencing element types and degrees. Soil fauna communities strongly influenced the TC and TP concentrations of C. meyeriana litter, and TP content of C. lasiocapa. Our results indicate that soil fauna have important effects on litter decomposition and this influence will vary with the wetland succession and seasonal variation.
基金Under the auspices of National Natural Science Foundation of China(No.41201335)
文摘The Songnen Plain has a typical soda-saline soil, which often shrinks and cracks under natural conditions during water evaporation. This study aims to analyze the relationships between the crack characteristics and the soil properties of soda-saline soils quantitatively, and attempts to establish prediction models for the main soil properties of soda-saline soils based on the results. In order to achieve these objectives, a desiccation cracking test was conducted using 17 soil specimens with different salinity levels under controlled laboratory conditions. Correlation analysis was then performed between the crack characteristics and the soil properties. The results indicate that the crack characteristics can well represent the surface appearances of cracked soils, they also can well distinguish the salinity levels of soda-saline soils while the clay contents and mineralogical compositions of soils are stable. Among the crack characteristics, crack length has the best relationships with the salinity levels of soda-saline soils. Specifically, the crack length has high correlation(R2 > 0.87) with the electrical conductivity(EC), Na+, CO32– and the salinity, it also has reasonable relationship(R2 > 0.68) with HCO3–, this indicates crack length can be well used for the prediction of these properties of soda-saline soils.
文摘Methane (CH4) and carbon dioxide (CO2) emission was measured from mires in the Sanjiang Plain, Northeast China, by using a static chamber technique during free snow-covered periods. The seasonal mean emission of CH4 was 12.4mg/(m2·h) and the emission range of CO2 was 8.7-16.6g/(m2·d) (gross CO2 flux) during plant growth period. CO2 emission rate in the day was stronger than that at night, and the daily peak appears at 19:00. The mire plants in the Sanjiang Plain begin to sprout at the end of April. The aboveground biomass of the mire plants increased from zero to the peak from July to September and showed single peak form. The aboveground biomass of Carex lasiocarpa (464.8g/m2) was lower than that of Deyeuxia platyphylla (530.8g/m2), but the underground biomass was higher than that of Deyeuxia platyphylla. Gross CO2 flux showed the significance positive correlation relationship with plant biomass. Gross CO2 flux and CH4 emission were also correlated with soil temperature (0-5cm) and water temperature. However, the highest CH4 emission rate lagged behind the highest soil temperature in the root area during plant growth period. The data also indicated that wet and warm conditions during the early spring led to greater value of CH4 emission flux. Inundation is the necessary condition for the existence of methane bacteria, but there is no significant positive correlation between the inundation depth and CH4 emission rate in this region. Within the same growing season and under the same inundation condition, the variations of CH4 emission rate could be markedly different.