In order to achieve an automatic leveling function for work platforms of aerial vehicles with mixed-booms( MAV) in full elevating domain,an auto-leveling mechanism for the platform is proposed based on a control metho...In order to achieve an automatic leveling function for work platforms of aerial vehicles with mixed-booms( MAV) in full elevating domain,an auto-leveling mechanism for the platform is proposed based on a control method of booms-constraint,where mixed-boom structures and elevating characteristics are considered. Three models of constraint strategies include non-constraint model,elevating constraint model and lowering constraint model,which is designed to meet the leveling requirements in full working extent. Through the hydro-mechatronic unified modeling,a virtual prototype model is set up based on the auto-leveling mechanism,and leveling performances of the platform are studied during booms elevating to the maximum working height and extent. Simulation results show that the control method of booms-constraint can realize auto-leveling of the platform under two typical working conditions,meanwhile a leveling deviation appears at the constrained point,but the platform inclination is adjusted in the permissible range. The control method does not only restrict booms' freedom elevating to a certain extent,but also impacts the booms extending to the maximum working range. Experimental results verify that the auto-leveling mechanism based on booms-constraint control is valid and rational,which provides an effective technology approach for development of the platform leveling of MAV.展开更多
基金Supported by the National Natural Science Foundation of China(No.51509006)National Key Technology R&D Program(No.2015BAF07B08)Fundamental Research Funds for the Central Universities of Chang’an University(No.310825161008)
文摘In order to achieve an automatic leveling function for work platforms of aerial vehicles with mixed-booms( MAV) in full elevating domain,an auto-leveling mechanism for the platform is proposed based on a control method of booms-constraint,where mixed-boom structures and elevating characteristics are considered. Three models of constraint strategies include non-constraint model,elevating constraint model and lowering constraint model,which is designed to meet the leveling requirements in full working extent. Through the hydro-mechatronic unified modeling,a virtual prototype model is set up based on the auto-leveling mechanism,and leveling performances of the platform are studied during booms elevating to the maximum working height and extent. Simulation results show that the control method of booms-constraint can realize auto-leveling of the platform under two typical working conditions,meanwhile a leveling deviation appears at the constrained point,but the platform inclination is adjusted in the permissible range. The control method does not only restrict booms' freedom elevating to a certain extent,but also impacts the booms extending to the maximum working range. Experimental results verify that the auto-leveling mechanism based on booms-constraint control is valid and rational,which provides an effective technology approach for development of the platform leveling of MAV.