The suitability of high pressure nozzles in terms of impact upon targeted surfaces has indicated its effectiveness for the cleaning of oil production tubing scale, which has recently attracted wider industrial applica...The suitability of high pressure nozzles in terms of impact upon targeted surfaces has indicated its effectiveness for the cleaning of oil production tubing scale, which has recently attracted wider industrial applications considering its efficiency, ease of operation and cost benefit. In the oil and gas production, these nozzles are now used for cleaning the scale deposits along the production tubing resulted mainly from salt crystallization due to pressure and temperature drop. Detailed characterizations of flat-fan nozzle in terms of droplet sizes and mean velocities will benefit momentum computations for the axial and radial distribution along the spray width, with the view of finding the best stand-off distance between the target scale and the spray nozzle. While the droplet sizes and the velocities determine the momentum at impact, measuring droplet sizes has been known to be difficult especially in the high density spray region, still laboratory characterization of nozzles provides a reliable data especially avoiding uncontrollable parameters. While several researches consider break up insensitive to the cleaning performance, this research investigates the experimental data obtained using PDA (phase doppler anemometry) which led to established variation in momentum across the spray width thus, non-uniformity of impact distribution. Comparative model was then developed using Ansys Fluent code, which verifies the eroded surfaces of material using the flat-fan atomizer to have shown variability in the extent of impact actions due to kinetic energy difference between the center and edge droplets. The study's findings could be useful in establishing the effect of droplet kinetic energies based on the spray penetration, and will also add significant understanding to the effect of the ligaments and droplets, along the spray penetration in order to ascertain their momentum impact distribution along the targeted surface.展开更多
When condensation occurs in supersonic flow fields, the flow is thected by the latent heat released. In the present study, Navier-Stokes equations were solved numerically using a 3rd-order MUSCL type TVD finitediffere...When condensation occurs in supersonic flow fields, the flow is thected by the latent heat released. In the present study, Navier-Stokes equations were solved numerically using a 3rd-order MUSCL type TVD finitedifference scheme with a second-order fractionabetep for time integration. Baldwin-Lomax model, that is the algebraic model, called the zero equation model was used in the computations. The effects of initial conditions (initial degree of supersaturation and total temperature in the reservoir) on condensing fiow of moist air in a supersonic circular half nozzle were investigated. In this case, the effect of condensation on the boundary layer was also discussed in detail. As a result, the simulated flow fields were compared with experimental data in good agreement, and the velocity and temperature profiles were largely changed by condensation.展开更多
Recently,by combining a swirl flow with non-equilibrium condensation phenomena of condensate gas generated in a supersonic flow,a separating and extracting techniques of condensate gas have been developed.This techniq...Recently,by combining a swirl flow with non-equilibrium condensation phenomena of condensate gas generated in a supersonic flow,a separating and extracting techniques of condensate gas have been developed.This technique can reduce the size of the device and don't use chemicals.In the present study,by using a non-equilibrium condensation phenomenon of moist air occurred in the supersonic flow in the annular nozzle composed of an inher body and an outer nozzle with a swirl,the possibility of separation of the condensable gas and the effect of shape of nozzle inlet on the flow field were examined numerically.展开更多
Based on non-equilibrium thermodynamic theory, a temperature field model of gun muzzle is setup We obtain not only a solitary solution, but also a bifurcation solution. The physical picture of the solutions is corresp...Based on non-equilibrium thermodynamic theory, a temperature field model of gun muzzle is setup We obtain not only a solitary solution, but also a bifurcation solution. The physical picture of the solutions is corresponding to the center flame and secondary flame of the gun muzzle.展开更多
文摘The suitability of high pressure nozzles in terms of impact upon targeted surfaces has indicated its effectiveness for the cleaning of oil production tubing scale, which has recently attracted wider industrial applications considering its efficiency, ease of operation and cost benefit. In the oil and gas production, these nozzles are now used for cleaning the scale deposits along the production tubing resulted mainly from salt crystallization due to pressure and temperature drop. Detailed characterizations of flat-fan nozzle in terms of droplet sizes and mean velocities will benefit momentum computations for the axial and radial distribution along the spray width, with the view of finding the best stand-off distance between the target scale and the spray nozzle. While the droplet sizes and the velocities determine the momentum at impact, measuring droplet sizes has been known to be difficult especially in the high density spray region, still laboratory characterization of nozzles provides a reliable data especially avoiding uncontrollable parameters. While several researches consider break up insensitive to the cleaning performance, this research investigates the experimental data obtained using PDA (phase doppler anemometry) which led to established variation in momentum across the spray width thus, non-uniformity of impact distribution. Comparative model was then developed using Ansys Fluent code, which verifies the eroded surfaces of material using the flat-fan atomizer to have shown variability in the extent of impact actions due to kinetic energy difference between the center and edge droplets. The study's findings could be useful in establishing the effect of droplet kinetic energies based on the spray penetration, and will also add significant understanding to the effect of the ligaments and droplets, along the spray penetration in order to ascertain their momentum impact distribution along the targeted surface.
文摘When condensation occurs in supersonic flow fields, the flow is thected by the latent heat released. In the present study, Navier-Stokes equations were solved numerically using a 3rd-order MUSCL type TVD finitedifference scheme with a second-order fractionabetep for time integration. Baldwin-Lomax model, that is the algebraic model, called the zero equation model was used in the computations. The effects of initial conditions (initial degree of supersaturation and total temperature in the reservoir) on condensing fiow of moist air in a supersonic circular half nozzle were investigated. In this case, the effect of condensation on the boundary layer was also discussed in detail. As a result, the simulated flow fields were compared with experimental data in good agreement, and the velocity and temperature profiles were largely changed by condensation.
文摘Recently,by combining a swirl flow with non-equilibrium condensation phenomena of condensate gas generated in a supersonic flow,a separating and extracting techniques of condensate gas have been developed.This technique can reduce the size of the device and don't use chemicals.In the present study,by using a non-equilibrium condensation phenomenon of moist air occurred in the supersonic flow in the annular nozzle composed of an inher body and an outer nozzle with a swirl,the possibility of separation of the condensable gas and the effect of shape of nozzle inlet on the flow field were examined numerically.
文摘Based on non-equilibrium thermodynamic theory, a temperature field model of gun muzzle is setup We obtain not only a solitary solution, but also a bifurcation solution. The physical picture of the solutions is corresponding to the center flame and secondary flame of the gun muzzle.