分布式无迹信息滤波(Distributed unscented information filter,DUIF)算法是一种有效的非线性分布式状态估计多源信息融合方法,然而当将该算法应用于稀疏无线传感器网络(Wireless sensor networks,WSN)时,稀疏WSN中存在的无效节点会引...分布式无迹信息滤波(Distributed unscented information filter,DUIF)算法是一种有效的非线性分布式状态估计多源信息融合方法,然而当将该算法应用于稀疏无线传感器网络(Wireless sensor networks,WSN)时,稀疏WSN中存在的无效节点会引起使滤波趋于发散的平均一致误差.针对该问题,本文提出一种改进DUIF算法.该算法不改变DUIF算法的级联结构,而是将其底层和上层滤波器分别改进为局部无迹信息滤波器(Local unscented information filter,LUIF)和加权平均一致性滤波器.LUIF对每个节点的局部多源观测信息进行局部融合,得到局部的后验估计信息向量和矩阵,进而将它们作为加权平均一致性滤波器的输入,最终得到不包含平均一致误差的分布式后验估计结果.其中,加权平均一致性滤波器是通过对由LUIF输出的局部后验估计信息向量和矩阵分别进行平均一致性滤波而得以在改进DUIF算法框架下实现的.同时,在此过程中,相邻节点之间的状态估计互相关信息也被引入改进DUIF算法的输出结果中,进一步增强了滤波的可靠性.仿真实验结果表明,改进DUIF算法能够在稀疏WSN中对机动目标进行有效跟踪,在估计精度和抑制滤波发散方面明显优于标准DUIF算法.展开更多
SSDF(Spectrum Sensing Data Falsification)攻击是认知无线网络中对频谱感知性能危害最大的攻击方式之一。基于认知无线网络中信号频域的固有稀疏性,本文结合了压缩感知(CS)技术与平均一致(average consensus)算法,建立了可防御SSDF攻...SSDF(Spectrum Sensing Data Falsification)攻击是认知无线网络中对频谱感知性能危害最大的攻击方式之一。基于认知无线网络中信号频域的固有稀疏性,本文结合了压缩感知(CS)技术与平均一致(average consensus)算法,建立了可防御SSDF攻击的分布式宽带压缩频谱感知模型。本文建立了次用户的声望值指标,用以在分布式信息融合的过程中更加准确地排除潜在的恶意次用户影响。在感知阶段,各个CR节点对接收到的主用户信号进行压缩采样以减少对宽带信号采样的开销和复杂度,并做出本地频谱估计。在信息融合阶段,各CR节点的本地频谱估计结果以分布式的方式进行信息融合,排除潜在恶意次用户的影响,得到最终的频谱估计结果。仿真结果表明,本文提出的分布式频谱感知模型可以有效地抵御SSDF攻击,提高了频谱感知的性能。展开更多
文摘分布式无迹信息滤波(Distributed unscented information filter,DUIF)算法是一种有效的非线性分布式状态估计多源信息融合方法,然而当将该算法应用于稀疏无线传感器网络(Wireless sensor networks,WSN)时,稀疏WSN中存在的无效节点会引起使滤波趋于发散的平均一致误差.针对该问题,本文提出一种改进DUIF算法.该算法不改变DUIF算法的级联结构,而是将其底层和上层滤波器分别改进为局部无迹信息滤波器(Local unscented information filter,LUIF)和加权平均一致性滤波器.LUIF对每个节点的局部多源观测信息进行局部融合,得到局部的后验估计信息向量和矩阵,进而将它们作为加权平均一致性滤波器的输入,最终得到不包含平均一致误差的分布式后验估计结果.其中,加权平均一致性滤波器是通过对由LUIF输出的局部后验估计信息向量和矩阵分别进行平均一致性滤波而得以在改进DUIF算法框架下实现的.同时,在此过程中,相邻节点之间的状态估计互相关信息也被引入改进DUIF算法的输出结果中,进一步增强了滤波的可靠性.仿真实验结果表明,改进DUIF算法能够在稀疏WSN中对机动目标进行有效跟踪,在估计精度和抑制滤波发散方面明显优于标准DUIF算法.
文摘SSDF(Spectrum Sensing Data Falsification)攻击是认知无线网络中对频谱感知性能危害最大的攻击方式之一。基于认知无线网络中信号频域的固有稀疏性,本文结合了压缩感知(CS)技术与平均一致(average consensus)算法,建立了可防御SSDF攻击的分布式宽带压缩频谱感知模型。本文建立了次用户的声望值指标,用以在分布式信息融合的过程中更加准确地排除潜在的恶意次用户影响。在感知阶段,各个CR节点对接收到的主用户信号进行压缩采样以减少对宽带信号采样的开销和复杂度,并做出本地频谱估计。在信息融合阶段,各CR节点的本地频谱估计结果以分布式的方式进行信息融合,排除潜在恶意次用户的影响,得到最终的频谱估计结果。仿真结果表明,本文提出的分布式频谱感知模型可以有效地抵御SSDF攻击,提高了频谱感知的性能。