期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
word2vec-ACV:OOV语境含义的词向量生成模型
被引量:
7
1
作者
王永贵
郑泽
李玥
《计算机应用研究》
CSCD
北大核心
2019年第6期1623-1628,共6页
针对word2vec模型生成的词向量缺乏语境的多义性以及无法创建集外词(OOV)词向量的问题,引入相似信息与word2vec模型相结合,提出word2vec-ACV模型。该模型首先基于连续词袋(CBOW)和Hierarchical softmax的word2vec模型训练出词向量矩阵...
针对word2vec模型生成的词向量缺乏语境的多义性以及无法创建集外词(OOV)词向量的问题,引入相似信息与word2vec模型相结合,提出word2vec-ACV模型。该模型首先基于连续词袋(CBOW)和Hierarchical softmax的word2vec模型训练出词向量矩阵即权重矩阵;然后将共现矩阵进行归一化处理得到平均上下文词向量,再将词向量组成平均上下文词向量矩阵;最后将平均上下文词向量矩阵与权重矩阵相乘得到词向量矩阵。为了能同时解决集外词及多义性问题,将平均上下文词向量分为全局平均上下文词向量(global ACV)和局部平均上下文词向量(local ACV)两种,并对两者取权值组成新的平均上下文词向量矩阵,并将word2vec-ACV模型和word2vec模型分别进行类比任务实验和命名实体识别任务实验。实验结果表明,word2vec-ACV模型同时解决了语境多义性以及创建集外词词向量的问题,降低了时间消耗,提升了词向量表达的准确性和对海量词汇的处理能力。
展开更多
关键词
word2vec模型
词
向量
共现矩阵
平均上下文词向量
下载PDF
职称材料
题名
word2vec-ACV:OOV语境含义的词向量生成模型
被引量:
7
1
作者
王永贵
郑泽
李玥
机构
辽宁工程技术大学软件学院
出处
《计算机应用研究》
CSCD
北大核心
2019年第6期1623-1628,共6页
基金
国家自然科学基金青年基金资助项目(61404069)
文摘
针对word2vec模型生成的词向量缺乏语境的多义性以及无法创建集外词(OOV)词向量的问题,引入相似信息与word2vec模型相结合,提出word2vec-ACV模型。该模型首先基于连续词袋(CBOW)和Hierarchical softmax的word2vec模型训练出词向量矩阵即权重矩阵;然后将共现矩阵进行归一化处理得到平均上下文词向量,再将词向量组成平均上下文词向量矩阵;最后将平均上下文词向量矩阵与权重矩阵相乘得到词向量矩阵。为了能同时解决集外词及多义性问题,将平均上下文词向量分为全局平均上下文词向量(global ACV)和局部平均上下文词向量(local ACV)两种,并对两者取权值组成新的平均上下文词向量矩阵,并将word2vec-ACV模型和word2vec模型分别进行类比任务实验和命名实体识别任务实验。实验结果表明,word2vec-ACV模型同时解决了语境多义性以及创建集外词词向量的问题,降低了时间消耗,提升了词向量表达的准确性和对海量词汇的处理能力。
关键词
word2vec模型
词
向量
共现矩阵
平均上下文词向量
Keywords
word2vec model
word vector
co-occurrence matrix
ACV
分类号
TP391.1 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
word2vec-ACV:OOV语境含义的词向量生成模型
王永贵
郑泽
李玥
《计算机应用研究》
CSCD
北大核心
2019
7
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部