A quadratic scalar and vector coupling model proposed recently has been applied to finite nuclei.The calculated results are compared with those of the derivative scalar coupling (DSC) model and the nonlinear Walecka m...A quadratic scalar and vector coupling model proposed recently has been applied to finite nuclei.The calculated results are compared with those of the derivative scalar coupling (DSC) model and the nonlinear Walecka model The results show that the spin-orbit splittings are improved considerably by quadratic couplings in contrast to the DSC model However,the binding energy per nucleon,rms charge radius,as well as the spin-orbit splittings in the quadratic model are still small compared with those given by the nonlinear Walecka model and the experimental data.展开更多
The random K-satisfiability (K-SAT) problem is very diffcult when the clause density is close to the satisfiability threshold. In this paper we study this problem from the perspective of solution space coupling. We ...The random K-satisfiability (K-SAT) problem is very diffcult when the clause density is close to the satisfiability threshold. In this paper we study this problem from the perspective of solution space coupling. We divide a given difficult random K-SAT formula into two easy sub-formulas and let the two corresponding solution spaces to interact with each other through a coupling field x. We investigate the statistical mechanical property of this coupled system by mean field theory and computer simulations. The coupled system has an ergodicity-breaking (clustering) transition at certain critical value Xd of the coupling field. At this transition point, the mean overlap value between the solutions of the two solution spaces is very close to 1. The mean energy density of the coupled system at its clustering transition point is less than the mean energy density of the original K-SAT problem at the temperature-induced clustering transition point. The implications of this work for designing new heuristic K-SAT solvers are discussed.展开更多
Adjusting the suitable coupling constants in relativistic mean field(RMF) theory and focusing on thermal effect of an entropy per baryon(S) from 0 to 3, we investigate the composition and structure of massive protoneu...Adjusting the suitable coupling constants in relativistic mean field(RMF) theory and focusing on thermal effect of an entropy per baryon(S) from 0 to 3, we investigate the composition and structure of massive protoneutron stars corresponding PSR J1614-2230 and PSR J0348+0432. It is found that massive protoneutron stars(PNSs) have more hyperons than cold neutron stars. The entropy per baryon will stiffen the equation of state, and the influence on the pressure is more obvious at low density than high density, while the influence on the energy density is more obvious at high density than low density. It is found that higher entropy will give higher maximum mass, higher central temperature and lower central density. The entropy per baryon changes from 0 to 3, the radius of a PNS corresponding PSR J0348+0432 will increase from 12.86 km to 19.31 km and PSR J1612-2230 will increase from 13.03 km to 19.93 km.The entropy per baryon will raise the central temperature of massive PNSs in higher entropy per baryon, but the central temperature of massive PNSs maybe keep unchanged in lower entropy per baryon. The entropy per baryon will increase the moment of inertia of a massive protoneutron star, while decrease gravitational redshift of a massive neutron star.展开更多
A new determination of the Lambda-nucleon coupling constants in relativistic mean field theory is presented by optimizing both hyperon binding energy and spin-orbit splitting, ttypernuclear single particle spectra wit...A new determination of the Lambda-nucleon coupling constants in relativistic mean field theory is presented by optimizing both hyperon binding energy and spin-orbit splitting, ttypernuclear single particle spectra with the new coupling constants suggest the good agreement between the calculation and available data. The spin-orbit splitting of hyperon in medium mass hypernuclei is systematically larger than that in light- or heavy-mass hypernuclei. The sensitivity of the Lambda spin-orbit splitting to the omega-Lambda-Laznbda tensor coupling term is also explored.展开更多
Effects of gravitational correction through the introduction of U bosons on neutron stars with antikaon condensation are studied in the relativistic mean field theory. How the global properties of neutron stars, redsh...Effects of gravitational correction through the introduction of U bosons on neutron stars with antikaon condensation are studied in the relativistic mean field theory. How the global properties of neutron stars, redshift and the momentum of inertia are modified by gravitational correction and antikaon condensation are discussed here. Results show that antikaon condensation can occur at the core of pulsar PSR J1614-2230. Gravitational correction and antikaon condensation influence each other, and when coupling constant of U bosons and baryons becomes very high, effects of antikaon condensation almost vanish. Moreover, both the redshift and the momentum of inertia of neutron stars are sensitive to the constant of U bosons. Combining with observation data, we can provide a further constraint on coupling constant of U bosons.展开更多
文摘A quadratic scalar and vector coupling model proposed recently has been applied to finite nuclei.The calculated results are compared with those of the derivative scalar coupling (DSC) model and the nonlinear Walecka model The results show that the spin-orbit splittings are improved considerably by quadratic couplings in contrast to the DSC model However,the binding energy per nucleon,rms charge radius,as well as the spin-orbit splittings in the quadratic model are still small compared with those given by the nonlinear Walecka model and the experimental data.
基金Supported by the Knowledge Innovation Program of Chinese Academy of Sciences under Grant No.KJCX2-EW-J02the Natural National Science Foundation of China under Grant Nos.11121403 and 11225526
文摘The random K-satisfiability (K-SAT) problem is very diffcult when the clause density is close to the satisfiability threshold. In this paper we study this problem from the perspective of solution space coupling. We divide a given difficult random K-SAT formula into two easy sub-formulas and let the two corresponding solution spaces to interact with each other through a coupling field x. We investigate the statistical mechanical property of this coupled system by mean field theory and computer simulations. The coupled system has an ergodicity-breaking (clustering) transition at certain critical value Xd of the coupling field. At this transition point, the mean overlap value between the solutions of the two solution spaces is very close to 1. The mean energy density of the coupled system at its clustering transition point is less than the mean energy density of the original K-SAT problem at the temperature-induced clustering transition point. The implications of this work for designing new heuristic K-SAT solvers are discussed.
基金Supported by National Natural Science Foundation of China under Grant No.11175147
文摘Adjusting the suitable coupling constants in relativistic mean field(RMF) theory and focusing on thermal effect of an entropy per baryon(S) from 0 to 3, we investigate the composition and structure of massive protoneutron stars corresponding PSR J1614-2230 and PSR J0348+0432. It is found that massive protoneutron stars(PNSs) have more hyperons than cold neutron stars. The entropy per baryon will stiffen the equation of state, and the influence on the pressure is more obvious at low density than high density, while the influence on the energy density is more obvious at high density than low density. It is found that higher entropy will give higher maximum mass, higher central temperature and lower central density. The entropy per baryon changes from 0 to 3, the radius of a PNS corresponding PSR J0348+0432 will increase from 12.86 km to 19.31 km and PSR J1612-2230 will increase from 13.03 km to 19.93 km.The entropy per baryon will raise the central temperature of massive PNSs in higher entropy per baryon, but the central temperature of massive PNSs maybe keep unchanged in lower entropy per baryon. The entropy per baryon will increase the moment of inertia of a massive protoneutron star, while decrease gravitational redshift of a massive neutron star.
基金Supported by Chinese Universities Scientific Fund under Grant No.2011JS050
文摘A new determination of the Lambda-nucleon coupling constants in relativistic mean field theory is presented by optimizing both hyperon binding energy and spin-orbit splitting, ttypernuclear single particle spectra with the new coupling constants suggest the good agreement between the calculation and available data. The spin-orbit splitting of hyperon in medium mass hypernuclei is systematically larger than that in light- or heavy-mass hypernuclei. The sensitivity of the Lambda spin-orbit splitting to the omega-Lambda-Laznbda tensor coupling term is also explored.
基金Supported by National Natural Science Foundation of China under Grant Nos.11265009,11271055,and 11175077General Project of Liaoning Provincial Department of Education under Grant No.L2015005
文摘Effects of gravitational correction through the introduction of U bosons on neutron stars with antikaon condensation are studied in the relativistic mean field theory. How the global properties of neutron stars, redshift and the momentum of inertia are modified by gravitational correction and antikaon condensation are discussed here. Results show that antikaon condensation can occur at the core of pulsar PSR J1614-2230. Gravitational correction and antikaon condensation influence each other, and when coupling constant of U bosons and baryons becomes very high, effects of antikaon condensation almost vanish. Moreover, both the redshift and the momentum of inertia of neutron stars are sensitive to the constant of U bosons. Combining with observation data, we can provide a further constraint on coupling constant of U bosons.