Based on data collected by Chinese Civil Aviation Statistic Center, the annual CO2 emissions of aircrafts during 1960-2009 were calculated, and the emission intensity and its dynamic characteristics were analyzed. The...Based on data collected by Chinese Civil Aviation Statistic Center, the annual CO2 emissions of aircrafts during 1960-2009 were calculated, and the emission intensity and its dynamic characteristics were analyzed. The results show that the total CO2 emissions of aircrafts in China increased from 120×10^3 t in 1960 to 41.44×10^6 t in 2009. The CO2 emission intensity decreased from 2.9 kg (converted t kra)-1 in 1960 to 0.96 kg (converted t km)-1 in 2009 at an average rate of 0.04 kg (converted t km)-I per year. The average share of CO2 emissions of aircrafts on the total CO2 emissions from the sector of transportation, storage and post was 6.6% during 1980-2005, and 0.25% on the total emissions from fossil fuel combustion during 1971-2008.展开更多
This paper provides a computation on both the China's aggregate CO2 emission volume and the emission of each sector over the period of 2002-2007, based on the input-output analysis. Further analysis is also given on ...This paper provides a computation on both the China's aggregate CO2 emission volume and the emission of each sector over the period of 2002-2007, based on the input-output analysis. Further analysis is also given on the various determinants of the change in the emission volume, with the aid of structural decomposition analysis (SDA) based on a residual-free method. Based on the input-output table of China in 2002 and 2007, the merge of sectors and the adjustment of price change have been made during the study. The emissions of carbon dioxide in China increased from 2,887.3 million ton to 5,664.6 million ton during 2002-2007. The average rate of increase is 13.3%, faster than the average rate of gross domestic product (GDP) growth 11.6% slightly. According to the process of SDA, the changes in emission are analyzed in terms of four different factors. Among the four factors studied in the paper, it is found that the change of emission intensity and structure of demand are the main reason of the decrease of emission, while production technology and scale effect increase the emission volume. The paper also finds that although the direct emission intensity decreased during the study period, the total emission intensity increased with the annual rate of 3.8%, which reflects the result of energy policy is not equal in different sectors.展开更多
The energy budget of the magnetosphere-ionosphere (MI) system during 1998-2008 was examined by using Akasofu's epsilon function. The results showed that 1) the yearly average rate of solar wind energy input into t...The energy budget of the magnetosphere-ionosphere (MI) system during 1998-2008 was examined by using Akasofu's epsilon function. The results showed that 1) the yearly average rate of solar wind energy input into the MI system was 4.51 GGJ (GGJ=1018 J), while the yearly average total dissipation was 4.30 GGJ; 2) the energy partitioning in the ring current and polar region was 56%:44%; 3) the energy input and dissipation processes continuously proceeded both in storm-substorm events and less disturbed intervals, suggesting the significant contribution of slow but long-lasting energy process during the less disturbance periods to the total energy budget. In addition, we found in this study an interesting phenomenon "self-adjustment ability" of the MI system which behaves just like a water reservoir. During solar active years, the input energy is more than the dissipated energy, implying that a portion of the input energy is not immediately released, but is stored in the magnetosphere. On the other hand, during less active years, the dissipated energy is more than the input energy, implying that the previously stored energy makes up for the energy input shortage in this period.展开更多
基金supported by Climate Change Special Project of China Meteorological Administration (No. CCSF2011-14)
文摘Based on data collected by Chinese Civil Aviation Statistic Center, the annual CO2 emissions of aircrafts during 1960-2009 were calculated, and the emission intensity and its dynamic characteristics were analyzed. The results show that the total CO2 emissions of aircrafts in China increased from 120×10^3 t in 1960 to 41.44×10^6 t in 2009. The CO2 emission intensity decreased from 2.9 kg (converted t kra)-1 in 1960 to 0.96 kg (converted t km)-1 in 2009 at an average rate of 0.04 kg (converted t km)-I per year. The average share of CO2 emissions of aircrafts on the total CO2 emissions from the sector of transportation, storage and post was 6.6% during 1980-2005, and 0.25% on the total emissions from fossil fuel combustion during 1971-2008.
文摘This paper provides a computation on both the China's aggregate CO2 emission volume and the emission of each sector over the period of 2002-2007, based on the input-output analysis. Further analysis is also given on the various determinants of the change in the emission volume, with the aid of structural decomposition analysis (SDA) based on a residual-free method. Based on the input-output table of China in 2002 and 2007, the merge of sectors and the adjustment of price change have been made during the study. The emissions of carbon dioxide in China increased from 2,887.3 million ton to 5,664.6 million ton during 2002-2007. The average rate of increase is 13.3%, faster than the average rate of gross domestic product (GDP) growth 11.6% slightly. According to the process of SDA, the changes in emission are analyzed in terms of four different factors. Among the four factors studied in the paper, it is found that the change of emission intensity and structure of demand are the main reason of the decrease of emission, while production technology and scale effect increase the emission volume. The paper also finds that although the direct emission intensity decreased during the study period, the total emission intensity increased with the annual rate of 3.8%, which reflects the result of energy policy is not equal in different sectors.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40931056, 40874089)the National Basic Research Program of China ("973" Project) (Grant Nos. 2008CB425704)
文摘The energy budget of the magnetosphere-ionosphere (MI) system during 1998-2008 was examined by using Akasofu's epsilon function. The results showed that 1) the yearly average rate of solar wind energy input into the MI system was 4.51 GGJ (GGJ=1018 J), while the yearly average total dissipation was 4.30 GGJ; 2) the energy partitioning in the ring current and polar region was 56%:44%; 3) the energy input and dissipation processes continuously proceeded both in storm-substorm events and less disturbed intervals, suggesting the significant contribution of slow but long-lasting energy process during the less disturbance periods to the total energy budget. In addition, we found in this study an interesting phenomenon "self-adjustment ability" of the MI system which behaves just like a water reservoir. During solar active years, the input energy is more than the dissipated energy, implying that a portion of the input energy is not immediately released, but is stored in the magnetosphere. On the other hand, during less active years, the dissipated energy is more than the input energy, implying that the previously stored energy makes up for the energy input shortage in this period.