Based on the observations from 239 meteorological stations located in Central China (Henan, Hubei and Hunan provinces), this paper focuses on the climate change facts during 1961- 2010. There was a significant incre...Based on the observations from 239 meteorological stations located in Central China (Henan, Hubei and Hunan provinces), this paper focuses on the climate change facts during 1961- 2010. There was a significant increasing trend in annual mean temperature for Central China during 1961 -2010. The increasing rate was 0.15℃ per decade, which was lower than the national trend. Since the mid-1980s, temperature increasing was obvious. Large increasing rate was observed in the mid-eastern part of Central China. For the four seasons, the increasing rate in winter was the largest (0.27℃ per decade). The increasing rate in the annual mean minimum temperature was larger than that in the annual mean maximum temperature from 1961 to 2010. As a result, the diurnal range of temperature decreased at the rate of -0.10℃ per decade. The extreme high temperature events were increasing while the extreme low temperature events were significantly decreasing. There was no obvious trend in annual precipitation for Central China during 1961-2010. Precipitation in summer and winter significantly increased; change of precipitation in spring was not obvious; precipitation in autumn was decreasing. The decreasing rate of annual rainy days was -3.4 d per decade. The precipitation intensity increased at the rate of 0.25 mm d-1 per decade. Heavy-rain days significantly increased. Spring and summer started earlier while autumn and winter started later. As a result, spring and summer duration was expanding whereas autumn and winter duration shortened.展开更多
Daily climate data at 110 stations during 1961-2010 were selected to examine the changing characteristics of climate factors and extreme climate events in South China. The annual mean surface air temperature has incre...Daily climate data at 110 stations during 1961-2010 were selected to examine the changing characteristics of climate factors and extreme climate events in South China. The annual mean surface air temperature has increased significantly by 0.16℃ per decade, most notably in the Pearl River Delta and in winter. The increase rate of the annual extreme minimum temperature (0.48℃ per decade) is over twice that of the annual extreme maximum temperature (0.20℃ per decade), and the increase of the mean temperature is mainly the result of the increase of the extreme minimum temperature. The increase rate of high-temperature days (1.1 d per decade) is close to the decrease rate of low-temperature days (-1.3 d per decade). The rainfall has not shown any significant trend, but the number of rainy days has decreased and the rain intensity has increased. The regional mean sunshine duration has a significant decreasing trend of -40.9 h per decade, and the number of hazy days has a significant increasing trend of 6.3 d per decade. The decrease of sunshine duration is mainly caused by the increase of total cloud, not by the increase of hazy days in South China. Both the regional mean pan evaporation and mean wind speed have significant decreasing trends of -65.9 mm per decade and -0.11 m s-1 per decade, respectively. The decrease of both sunshine duration and mean wind speed plays an important role in the decrease of pan evaporation. The number of landing tropical cyclones has an insignificant decreasing trend of -0.6 per decade, but their intensities show a weak increasing trend. The formation location of tropical cyclones landing in South China has converged towards 10-19°N, and the landing position has shown a northward trend. The date of the first landfall tropical cyclone postpones 1.8 d per decade, and the date of the last landfall advances 3.6 d per decade, resulting in reduction of the typhoon season by 5.4 d per decade.展开更多
Change related to climate in Macao was studied on the basis of daily temperature observations over the period 1901-2007. The result shows that annual mean surface air temperature in Macao as a whole rose with a warmin...Change related to climate in Macao was studied on the basis of daily temperature observations over the period 1901-2007. The result shows that annual mean surface air temperature in Macao as a whole rose with a warming rate of about 0.066℃ per 10 years in the recent 107 years. The most evident warming occurred in spring and winter. The interdecadal variations of the seasonal mean temperature in summer and winter appeared as a series of waves with a time scale of about 30 years and 60 years, respectively. The annual mean minimum temperature increased about twice as fast as the annual mean maximum temperature, resulting in a broad decline in the annual mean diurnal range. The interdecadal variations of annual mean maximum temperature are obviously different from those of annual mean minimum temperature. It appears that the increase in the annual mean maximum temperature in the recent 20 years may be part of slow climate fluctuations with a periodicity of about 60 years, whereas that in the annual mean minimum temperature appears to be the continuation of a long-term warming trend.展开更多
基金National Natural Science Foundation of China(41171170)Chinese Academy of Sciences(KZZD-EW-04-01)+1 种基金National Basic Research Program of China(2013CB955900)Key Project of the Institute of Earth Environment and Project of State Key Laboratory of Loess and Quaternary Geology(SKLLQG)
基金supported by the Climate Change Special Project of China Meteorological Administration:The Assessment Report Preparation of the Climate Change of Central China (No. CCSF-10-04)
文摘Based on the observations from 239 meteorological stations located in Central China (Henan, Hubei and Hunan provinces), this paper focuses on the climate change facts during 1961- 2010. There was a significant increasing trend in annual mean temperature for Central China during 1961 -2010. The increasing rate was 0.15℃ per decade, which was lower than the national trend. Since the mid-1980s, temperature increasing was obvious. Large increasing rate was observed in the mid-eastern part of Central China. For the four seasons, the increasing rate in winter was the largest (0.27℃ per decade). The increasing rate in the annual mean minimum temperature was larger than that in the annual mean maximum temperature from 1961 to 2010. As a result, the diurnal range of temperature decreased at the rate of -0.10℃ per decade. The extreme high temperature events were increasing while the extreme low temperature events were significantly decreasing. There was no obvious trend in annual precipitation for Central China during 1961-2010. Precipitation in summer and winter significantly increased; change of precipitation in spring was not obvious; precipitation in autumn was decreasing. The decreasing rate of annual rainy days was -3.4 d per decade. The precipitation intensity increased at the rate of 0.25 mm d-1 per decade. Heavy-rain days significantly increased. Spring and summer started earlier while autumn and winter started later. As a result, spring and summer duration was expanding whereas autumn and winter duration shortened.
基金supported by the Special Climate Change Research Program of China Meteorological Administration (No. CCSF-09-11, CCSF-09-03, CCSF2011-25, and CCSF201211)the Science and Technology Planning Project of Guangdong province (No.2011A030200021)
文摘Daily climate data at 110 stations during 1961-2010 were selected to examine the changing characteristics of climate factors and extreme climate events in South China. The annual mean surface air temperature has increased significantly by 0.16℃ per decade, most notably in the Pearl River Delta and in winter. The increase rate of the annual extreme minimum temperature (0.48℃ per decade) is over twice that of the annual extreme maximum temperature (0.20℃ per decade), and the increase of the mean temperature is mainly the result of the increase of the extreme minimum temperature. The increase rate of high-temperature days (1.1 d per decade) is close to the decrease rate of low-temperature days (-1.3 d per decade). The rainfall has not shown any significant trend, but the number of rainy days has decreased and the rain intensity has increased. The regional mean sunshine duration has a significant decreasing trend of -40.9 h per decade, and the number of hazy days has a significant increasing trend of 6.3 d per decade. The decrease of sunshine duration is mainly caused by the increase of total cloud, not by the increase of hazy days in South China. Both the regional mean pan evaporation and mean wind speed have significant decreasing trends of -65.9 mm per decade and -0.11 m s-1 per decade, respectively. The decrease of both sunshine duration and mean wind speed plays an important role in the decrease of pan evaporation. The number of landing tropical cyclones has an insignificant decreasing trend of -0.6 per decade, but their intensities show a weak increasing trend. The formation location of tropical cyclones landing in South China has converged towards 10-19°N, and the landing position has shown a northward trend. The date of the first landfall tropical cyclone postpones 1.8 d per decade, and the date of the last landfall advances 3.6 d per decade, resulting in reduction of the typhoon season by 5.4 d per decade.
文摘Change related to climate in Macao was studied on the basis of daily temperature observations over the period 1901-2007. The result shows that annual mean surface air temperature in Macao as a whole rose with a warming rate of about 0.066℃ per 10 years in the recent 107 years. The most evident warming occurred in spring and winter. The interdecadal variations of the seasonal mean temperature in summer and winter appeared as a series of waves with a time scale of about 30 years and 60 years, respectively. The annual mean minimum temperature increased about twice as fast as the annual mean maximum temperature, resulting in a broad decline in the annual mean diurnal range. The interdecadal variations of annual mean maximum temperature are obviously different from those of annual mean minimum temperature. It appears that the increase in the annual mean maximum temperature in the recent 20 years may be part of slow climate fluctuations with a periodicity of about 60 years, whereas that in the annual mean minimum temperature appears to be the continuation of a long-term warming trend.