Because the partial transmit sequence(PTS) peak-to-average power ratio(PAPR) reduction technology for optical orthogonal frequency division multiplexing(O-OFDM) systems has higher computational complexity, a novel two...Because the partial transmit sequence(PTS) peak-to-average power ratio(PAPR) reduction technology for optical orthogonal frequency division multiplexing(O-OFDM) systems has higher computational complexity, a novel two-stage enhanced-iterative-algorithm PTS(TS-EIA-PTS) PAPR reduction algorithm with lower computational complexity is proposed in this paper. The simulation results show that the proposed TS-EIA-PTS PAPR reduction algorithm can reduce the computational complexity by 18.47% in the condition of the original signal sequence partitioned into 4 sub-blocks at the remaining stage of n-d=5. Furthermore, it has almost the same PAPR reduction performance and the same bit error rate(BER) performance as the EIA-PTS algorithm, and with the increase of the subcarrier number, the computational complexity can be further reduced. As a result, the proposed TS-EIA-PTS PAPR reduction algorithm is more suitable for the practical O-OFDM systems.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61472464 and 61471075)the Program for Innovation Team Building at Institutions of Higher Education in Chongqing(No.J2013-46)+1 种基金the Natural Science Foundation of Chongqing Science and Technology Commission(Nos.cstc2015jcyj A0554 and cstc2013jcyj A40017)the Program for Postgraduate Science Research and Innovation of Chongqing University of Posts and Telecommunications(Chongqing Municipal Education Commission)(No.CYS14144)
文摘Because the partial transmit sequence(PTS) peak-to-average power ratio(PAPR) reduction technology for optical orthogonal frequency division multiplexing(O-OFDM) systems has higher computational complexity, a novel two-stage enhanced-iterative-algorithm PTS(TS-EIA-PTS) PAPR reduction algorithm with lower computational complexity is proposed in this paper. The simulation results show that the proposed TS-EIA-PTS PAPR reduction algorithm can reduce the computational complexity by 18.47% in the condition of the original signal sequence partitioned into 4 sub-blocks at the remaining stage of n-d=5. Furthermore, it has almost the same PAPR reduction performance and the same bit error rate(BER) performance as the EIA-PTS algorithm, and with the increase of the subcarrier number, the computational complexity can be further reduced. As a result, the proposed TS-EIA-PTS PAPR reduction algorithm is more suitable for the practical O-OFDM systems.