We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly...We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly distributed in China's Mainland. We first employ Fourier transformation to remove the influence of atmospheric temperature variations from the observation series, which are classified into the type of the steady-state temperature monotonously increasing with depth (type I) and other three types. Then we compare our results obtained from the data of type I, of which the values are thought to equal to those of the mean borehole heat flow, with those obtained from traditional heat flow observations mainly distributed in North China Craton. In computations of the SAHF at the observation stations, we deduce the thermal diffusivity and volumetric specific heat of the soil by employing harmonic solutions of the heat conduction equation for the same moisture group as the first step, and then we determine the SAHF using Fourier's law. Our results indicate that the SAHF derived from shallow earth geothermal data can reflect the heat flow field to a large extent.展开更多
Based on runoff, air temperature, and precipitation data from 1960 to 2010, the effects of climate change on water resources in the arid region of the northwestern China were investigated. The long-term trends of hydr...Based on runoff, air temperature, and precipitation data from 1960 to 2010, the effects of climate change on water resources in the arid region of the northwestern China were investigated. The long-term trends of hydroclimatic variables were studied by using both Mann-Kendall test and distributed-free cumulative sum (CUSUM) chart test. Results indicate that the mean annual air temperature increases significantly from 1960 to 2010. The annual precipitation exhibits an increasing trend, especially in the south slope of the Tianshan Mountains and the North Uygur Autonomous Region of Xinjiang in the study period. Step changes occur in 1988 in the mean annual air temperature time series and in 1991 in the precipitation time series. The runoff in different basins shows different trends, i.e., significantly increasing in the Kaidu River, the Aksu River and the Shule River, and decreasing in the Shiyang River. Correlation analy- sis reveals that the runoff in the North Xinjiang (i.e., the Weigan River, the Heihe River, and the Shiyang River) has a strong positive relationship with rainfall, while that in the south slope of the Tianshan Mountains, the middle section of the north slope of the Tianshan Mountains and the Shule River has a strong positive relationship with air temperature. The trends of rtmoff have strong negative correla- tions with glacier coverage and the proportion of glacier water in runoff. From the late 1980s, the climate has become warm and wet in the arid region of the northwestern China. The change in runoff is interacted with air temperature, precipitation and glacier coverage. The results show that streamflow in the arid region of the northwestern China is sensitive to climate change, which can be used as a reference for regional water resource assessment and management.展开更多
Monthly temperature and precipitation time-series for the Zhujiang River Basin are analyzed in order to identify changes in climate extremes. Daily temperature and precipitation data from 1961 to 2007 of 192 meteorolo...Monthly temperature and precipitation time-series for the Zhujiang River Basin are analyzed in order to identify changes in climate extremes. Daily temperature and precipitation data from 1961 to 2007 of 192 meteorological stations are used. Two temperature indicators (monthly mean and monthly maximum mean) and three precipitation indicators (monthly total, monthly maximum consecutive 5-day precipitation, and monthly dry days) are analyzed. Tendencies in all five indicators can be observed. Many stations show significant positive trends (above the 90% confidence level) for monthly mean temperatures and monthly maximum mean temperatures. For all months, a significant increase in temperature from 1961 to 2007 can be observed in the entire basin with the coastal area in particular. Positive trends of precipitation extremes can be observed from January to March. Negative trends are detected from September to November. The number of dry days in October increased significantly at 40% of all meteorological stations. Stations with changes of monthly precipitation extremes are scattered over the Zhujiang River Basin. An aggregation of heat waves and droughts can be detected which is accompanied by significant increases of temperature extremes and the negative tendencies in precipitation extremes. The detection of tendencies in climate station density. extremes essentially relies on a good data quality and high展开更多
The impacts of future climate change on streamflow of the Dongliao River Watershed located in Jilin Prov-ince, China have been evaluated quantitatively by using a general circulation model (HadCM3) coupled with the ...The impacts of future climate change on streamflow of the Dongliao River Watershed located in Jilin Prov-ince, China have been evaluated quantitatively by using a general circulation model (HadCM3) coupled with the Soil and Water Assessment Tool (SWAT) hydrological model. The model was calibrated and validated against the historical monitored data from 2005 to 2009. The streamflow was estimated by downscaling HadCM3 outputs to the daily mean temperature and precipitation series, derived for three 30-year time slices, 2020s, 2050s and 2080s. Results suggest that daily mean temperature increases with a changing rate of 0.435~C per decade, and precipitation decreases with a changing rate of 0.761 mm per decade. Compared with other seasons, the precipitation in summer shows significant downward trend, while a significant upward trend in autumn. The annual streamflow demonstrates a general down-ward trend with a decreasing rate of 0.405 m^3/s per decade. The streamflow shows significant downward and upward trends in summer and in autumn, respectively. The decreasing rate of streamflow in summer reaches 1.97 m^3/s per decade, which contributes primarily to the decrease of streamflow. The results of this work would be of great benifit to the design of economic and social development planning in the study area.展开更多
This study evaluates the seasonal cycle of the activity of convectively coupled equatorial waves(CCEWs),including mixed Rossby-gravity(MRG) and tropical depression-type(TD-type) waves,based on the twentieth century ex...This study evaluates the seasonal cycle of the activity of convectively coupled equatorial waves(CCEWs),including mixed Rossby-gravity(MRG) and tropical depression-type(TD-type) waves,based on the twentieth century experiments of 18 global climate models(GCMs) from the Coupled Model Intercomparison Project phase 3(CMIP3).The ensemble result of the 18 GCMs shows that the observed seasonal cycle of MRG and TD-type wave activity cannot be well reproduced.The seasonal transition of wave activity from the southern hemisphere to the northern hemisphere is delayed from April in the observations to May in the simulations,indicating that the simulated active season of tropical waves in the northern hemisphere is delayed and shortened.This delayed seasonal transition of tropical wave activity is associated with a delayed seasonal transition of simulated mean precipitation.The mean precipitation in April and May shows a double-ITCZ problem,and the horizontal resolution is important to the delayed seasonal transition of wave activity.Because of the coincident seasonal cycle of MRG and TD-type wave activity and tropical cyclone(TC) geneses,the delayed seasonal transition of wave activity may imply a similar problem of TC genesis in the GCMs,namely,a delayed and shortened TC season in the northern hemisphere.展开更多
The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally invest...The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally investigated by using a high-speed camera, and a theoretical model of the average droplet size was established according to the unstable wave theory. The results demonstrated that gas velocity passing through the hole is the key factor affecting the spray angle, which increases gradually with an increase in the gas velocity. When the gas velocity exceeds 7.5 m/s, the spray angle becomes stable at around 55°. The average flow velocity of the liquid sheet at the spray-hole increases significantly with an increase in the gas velocity, and decreases slightly with an increase in the liquid flow rate; moreover, it increases from the bottom of spray hole upward to the top. The density of liquid drops distribution in the spray area can be described by the RosinRammler function. In addition, the liquid drops are mainly concentrated in the area of spray angle ranging from 20° to 40°, and they gradually become uniform with the increase in the gas velocity and the liquid flow rate. The average liquid drop size deceases with an increase in the gas velocity, and increases slightly with an increasing liquid flow rate. In the normal working range, the average liquid drop size is about 1.0 mm to 2.5 mm in diameter.展开更多
An experimental investigation was conducted to measure the temperature variation across the flow channel and to determine the performance of a natural convection solar air heater at various tilt angles from 15, 30 and...An experimental investigation was conducted to measure the temperature variation across the flow channel and to determine the performance of a natural convection solar air heater at various tilt angles from 15, 30 and 45°. The results of the temperature profile across the air gap showed that heat transfer from the absorber plate to the air stream was mainly by convection. At a particular section, mean air temperature could be calculated from the arithmetic mean of the temperature profile across the air gap to within ± 2 ℃. The axial air temperature distribution was non linear and did not increase much beyond 1 m of collector length. It tended to decrease towards the end of the collector. Overall glass, absorber plate and mean air temperatures over the entire length of the solar air heater could be determined by averaging the mean axial temperatures to within ± 2 ℃. The heater performed better as inclination increased.展开更多
Rainfall and air temperature data from six meteorological stations above the Bengbu Sluice and hydrological and water resources evaluation data from the Bengbu Hydrological Station in the Huai River Basin from 1961 to...Rainfall and air temperature data from six meteorological stations above the Bengbu Sluice and hydrological and water resources evaluation data from the Bengbu Hydrological Station in the Huai River Basin from 1961 to 2008 are used to analyze the impact of changes in climatic factors on the amount of water resources in the Basin. There was a general trend of rise in its average annual air temperature, with the highest increase of 0.289℃/10a recorded at Bengbu in Anhui Province. Rising rainfall was mainly observed in the western part of the study area, while rainfall actually declined in the eastern part, i.e. the middle reaches of the Huai River. The Average rainfall in the study area was in a vaguely declining trend. In other words, the rainfall in the Basin is still much affected by natural fluctuations. On the whole, there was a trend of gradual decrease in the quantity of the Basin's water resources for the period under study. Water resources quantity is found to fall with decreasing rainfall and rising air temperature. Regression analysis is used to establish a mathematical model between water resources quantity and climatic factors (i.e. air temperature and rainfall) in order to explore the impact of climate change on water resources in the Basin. Moreover, various scenarios are set to quantitatively analyze the response of water resources to climate change. Sensitivity analysis shows that changes in rainfall have a much bigger impact on its water resources quantity than changes in its air temperature.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.4087404741174084)
文摘We attempt to compute the Surface Average Heat Flow (SAHF) from long-term temperature observations of one hundred seventy-seven observational points at the depths of 0.8, 1.6, and 3.2 m, which were relatively evenly distributed in China's Mainland. We first employ Fourier transformation to remove the influence of atmospheric temperature variations from the observation series, which are classified into the type of the steady-state temperature monotonously increasing with depth (type I) and other three types. Then we compare our results obtained from the data of type I, of which the values are thought to equal to those of the mean borehole heat flow, with those obtained from traditional heat flow observations mainly distributed in North China Craton. In computations of the SAHF at the observation stations, we deduce the thermal diffusivity and volumetric specific heat of the soil by employing harmonic solutions of the heat conduction equation for the same moisture group as the first step, and then we determine the SAHF using Fourier's law. Our results indicate that the SAHF derived from shallow earth geothermal data can reflect the heat flow field to a large extent.
基金Under the auspices of Major State Basic Research Development Program of China(No.2010CB951003)the National Climate Central,China Meteorological Administration,for providing the meteorological data for this study
文摘Based on runoff, air temperature, and precipitation data from 1960 to 2010, the effects of climate change on water resources in the arid region of the northwestern China were investigated. The long-term trends of hydroclimatic variables were studied by using both Mann-Kendall test and distributed-free cumulative sum (CUSUM) chart test. Results indicate that the mean annual air temperature increases significantly from 1960 to 2010. The annual precipitation exhibits an increasing trend, especially in the south slope of the Tianshan Mountains and the North Uygur Autonomous Region of Xinjiang in the study period. Step changes occur in 1988 in the mean annual air temperature time series and in 1991 in the precipitation time series. The runoff in different basins shows different trends, i.e., significantly increasing in the Kaidu River, the Aksu River and the Shule River, and decreasing in the Shiyang River. Correlation analy- sis reveals that the runoff in the North Xinjiang (i.e., the Weigan River, the Heihe River, and the Shiyang River) has a strong positive relationship with rainfall, while that in the south slope of the Tianshan Mountains, the middle section of the north slope of the Tianshan Mountains and the Shule River has a strong positive relationship with air temperature. The trends of rtmoff have strong negative correla- tions with glacier coverage and the proportion of glacier water in runoff. From the late 1980s, the climate has become warm and wet in the arid region of the northwestern China. The change in runoff is interacted with air temperature, precipitation and glacier coverage. The results show that streamflow in the arid region of the northwestern China is sensitive to climate change, which can be used as a reference for regional water resource assessment and management.
基金the National Basic Research Program of China(973 Program)(No. 2010CB428401)the Special Fund of Climate Change of the China Meteorological Administration (CCSF-09-16)by the National Natural Science Foundation of China(40910177)
文摘Monthly temperature and precipitation time-series for the Zhujiang River Basin are analyzed in order to identify changes in climate extremes. Daily temperature and precipitation data from 1961 to 2007 of 192 meteorological stations are used. Two temperature indicators (monthly mean and monthly maximum mean) and three precipitation indicators (monthly total, monthly maximum consecutive 5-day precipitation, and monthly dry days) are analyzed. Tendencies in all five indicators can be observed. Many stations show significant positive trends (above the 90% confidence level) for monthly mean temperatures and monthly maximum mean temperatures. For all months, a significant increase in temperature from 1961 to 2007 can be observed in the entire basin with the coastal area in particular. Positive trends of precipitation extremes can be observed from January to March. Negative trends are detected from September to November. The number of dry days in October increased significantly at 40% of all meteorological stations. Stations with changes of monthly precipitation extremes are scattered over the Zhujiang River Basin. An aggregation of heat waves and droughts can be detected which is accompanied by significant increases of temperature extremes and the negative tendencies in precipitation extremes. The detection of tendencies in climate station density. extremes essentially relies on a good data quality and high
基金Under the auspices of Major Science and Technology Program for Water Pollution Control and Treatment(No.2009ZX07526-006-04-01)
文摘The impacts of future climate change on streamflow of the Dongliao River Watershed located in Jilin Prov-ince, China have been evaluated quantitatively by using a general circulation model (HadCM3) coupled with the Soil and Water Assessment Tool (SWAT) hydrological model. The model was calibrated and validated against the historical monitored data from 2005 to 2009. The streamflow was estimated by downscaling HadCM3 outputs to the daily mean temperature and precipitation series, derived for three 30-year time slices, 2020s, 2050s and 2080s. Results suggest that daily mean temperature increases with a changing rate of 0.435~C per decade, and precipitation decreases with a changing rate of 0.761 mm per decade. Compared with other seasons, the precipitation in summer shows significant downward trend, while a significant upward trend in autumn. The annual streamflow demonstrates a general down-ward trend with a decreasing rate of 0.405 m^3/s per decade. The streamflow shows significant downward and upward trends in summer and in autumn, respectively. The decreasing rate of streamflow in summer reaches 1.97 m^3/s per decade, which contributes primarily to the decrease of streamflow. The results of this work would be of great benifit to the design of economic and social development planning in the study area.
基金supported financially by the National Basic Research Program of China (Grant No.2010CB950403)the National Natural Science Foundation of China (Major Research,Grant No. 40890151+2 种基金Grant Nos.40921160379 and 41105047)supported by the National Science Council (Grant No. NSC98-2745-M-001-005-MY3)supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy
文摘This study evaluates the seasonal cycle of the activity of convectively coupled equatorial waves(CCEWs),including mixed Rossby-gravity(MRG) and tropical depression-type(TD-type) waves,based on the twentieth century experiments of 18 global climate models(GCMs) from the Coupled Model Intercomparison Project phase 3(CMIP3).The ensemble result of the 18 GCMs shows that the observed seasonal cycle of MRG and TD-type wave activity cannot be well reproduced.The seasonal transition of wave activity from the southern hemisphere to the northern hemisphere is delayed from April in the observations to May in the simulations,indicating that the simulated active season of tropical waves in the northern hemisphere is delayed and shortened.This delayed seasonal transition of tropical wave activity is associated with a delayed seasonal transition of simulated mean precipitation.The mean precipitation in April and May shows a double-ITCZ problem,and the horizontal resolution is important to the delayed seasonal transition of wave activity.Because of the coincident seasonal cycle of MRG and TD-type wave activity and tropical cyclone(TC) geneses,the delayed seasonal transition of wave activity may imply a similar problem of TC genesis in the GCMs,namely,a delayed and shortened TC season in the northern hemisphere.
基金supported by the Science and Technology Research and Development Plan of Hebei Province, China (12276710D)
文摘The spray behaviors of the combined trapezoid spray tray(CTST) have a significant effect on the gas-liquid interface. In this paper, the spray process of CTST in a column, 570 mm in diameter, was experimentally investigated by using a high-speed camera, and a theoretical model of the average droplet size was established according to the unstable wave theory. The results demonstrated that gas velocity passing through the hole is the key factor affecting the spray angle, which increases gradually with an increase in the gas velocity. When the gas velocity exceeds 7.5 m/s, the spray angle becomes stable at around 55°. The average flow velocity of the liquid sheet at the spray-hole increases significantly with an increase in the gas velocity, and decreases slightly with an increase in the liquid flow rate; moreover, it increases from the bottom of spray hole upward to the top. The density of liquid drops distribution in the spray area can be described by the RosinRammler function. In addition, the liquid drops are mainly concentrated in the area of spray angle ranging from 20° to 40°, and they gradually become uniform with the increase in the gas velocity and the liquid flow rate. The average liquid drop size deceases with an increase in the gas velocity, and increases slightly with an increasing liquid flow rate. In the normal working range, the average liquid drop size is about 1.0 mm to 2.5 mm in diameter.
文摘An experimental investigation was conducted to measure the temperature variation across the flow channel and to determine the performance of a natural convection solar air heater at various tilt angles from 15, 30 and 45°. The results of the temperature profile across the air gap showed that heat transfer from the absorber plate to the air stream was mainly by convection. At a particular section, mean air temperature could be calculated from the arithmetic mean of the temperature profile across the air gap to within ± 2 ℃. The axial air temperature distribution was non linear and did not increase much beyond 1 m of collector length. It tended to decrease towards the end of the collector. Overall glass, absorber plate and mean air temperatures over the entire length of the solar air heater could be determined by averaging the mean axial temperatures to within ± 2 ℃. The heater performed better as inclination increased.
基金supported by the National Natural Sciences Foundation of China (Project Nos. 51079132 and 50679075)the Special Research Fund Project of the Chinese Ministry of Water Resources (Grant No. 200801001)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20094101110002)the National Key Scientific and Technological Project on Water Pollution Control and Treatment of China (Project No. 2009ZX07210-006)
文摘Rainfall and air temperature data from six meteorological stations above the Bengbu Sluice and hydrological and water resources evaluation data from the Bengbu Hydrological Station in the Huai River Basin from 1961 to 2008 are used to analyze the impact of changes in climatic factors on the amount of water resources in the Basin. There was a general trend of rise in its average annual air temperature, with the highest increase of 0.289℃/10a recorded at Bengbu in Anhui Province. Rising rainfall was mainly observed in the western part of the study area, while rainfall actually declined in the eastern part, i.e. the middle reaches of the Huai River. The Average rainfall in the study area was in a vaguely declining trend. In other words, the rainfall in the Basin is still much affected by natural fluctuations. On the whole, there was a trend of gradual decrease in the quantity of the Basin's water resources for the period under study. Water resources quantity is found to fall with decreasing rainfall and rising air temperature. Regression analysis is used to establish a mathematical model between water resources quantity and climatic factors (i.e. air temperature and rainfall) in order to explore the impact of climate change on water resources in the Basin. Moreover, various scenarios are set to quantitatively analyze the response of water resources to climate change. Sensitivity analysis shows that changes in rainfall have a much bigger impact on its water resources quantity than changes in its air temperature.