The inflow angle of tropical cyclones (TC) is generally neglected in numerical studies of ocean surface waves induced by TC. In this study, the impacts of TC inflow angle on ocean surface waves were investigated usi...The inflow angle of tropical cyclones (TC) is generally neglected in numerical studies of ocean surface waves induced by TC. In this study, the impacts of TC inflow angle on ocean surface waves were investigated using a high-resolution wave model. Six numerical experiments were conducted to examine, in detail, thc effects of inflow angle on mean wave parameters and the spectrum of wave directions. A comparison of the waves simulated in these experiments shows that inflow angle significantly modifies TC-induced ocean surface waves. As the inflow angle increases, the asymmetric axis of the significant wave height (SWH) field shifts 30° clockwise, and the maximum SWH moves from the front-right to the rear-right quadrant. Inflow angle also affects other mean wave parameters, especially in the rear-left quadrant, such as the mean wave direction, the mean wavelength, and the peak direction. Inflow angle is a key factor in wave models for the reproduction of double-peak or multi-peak patterns in the spectrum of wave directions. Sensitivity experiments also show that the simulation with a 40° inflow angle is the closest to that of the NOAA statistical SLOSH inflow angle. This suggests that 40° can be used as the inflow angle in future TC-induced ocean surface wave simulations when SLOSH or observed inflow angles are not available.展开更多
For the assessment of the impact of future climate change on the hydrologic regime and water resources of Peninsular Malaysia, it is necessary to downscale the climate change simulations of a coarse scale General Circ...For the assessment of the impact of future climate change on the hydrologic regime and water resources of Peninsular Malaysia, it is necessary to downscale the climate change simulations of a coarse scale General Circulation Model to the region of Peninsular Malaysia at fine grid resolution. This paper presents a desktop review of the state of climate change parameters, namely rainfall and river flow over the Peninsular Malaysia for the 2041-2050 projection period. Analysis of the results from the models shows there will be a substantial increase in mean monthly precipitation over the North East Coastal region from historical 259.5 mm to 281.5 mm, from 289.0 mm to 299.0 mm and 221.8 mm to 239.5 mm over Terengganu and Kelantan, respectively. Meanwhile, for river flow projection, it will be an expected increase in interannual and intraseasonal variability with increased hydrologic extremes (higher high flows, and lower low flows) at Kelantan, Pahang, Terengganu, and Kedah watersheds in the future.展开更多
The characteristics of a new type of drainage channel with staggered indented sills for controlling debris flows were studied. The intermediate fluid in the non-viscous debris flow exhibited a helical movement, wherea...The characteristics of a new type of drainage channel with staggered indented sills for controlling debris flows were studied. The intermediate fluid in the non-viscous debris flow exhibited a helical movement, whereas the fluid near the sidewall had a stop-start movement pattern; the viscous debris flow exhibited a stable structure between the indented sills. The experimental results indicate that the mean velocity of the debris flow increased with increasing channel gradients, and the debris flow velocity was slightly affected by the angle of the sills. The average velocity of the non-viscous debris flow increased in the range of(0.5–1.5) interval between the indented sills, whereas the average velocity of the viscous debris flow increased initially and then decreased in the range of(0.75–1.25) interval between the indented sills. The depth of the non-viscous debris flow tended to gradually increase as the channel gradients increased, whereas the depth of the viscous debris flow gradually decreased as the channel gradients increased. When the discharge of the debris flow was constant, the angle and the interval between the indented sills had a slight effect on the depth of the viscous debris flow, whereas the depth of the non-viscous debris flow exhibited a different trend, as the sill angles and intervals were varied.展开更多
The impacts of future climate change on streamflow of the Dongliao River Watershed located in Jilin Prov-ince, China have been evaluated quantitatively by using a general circulation model (HadCM3) coupled with the ...The impacts of future climate change on streamflow of the Dongliao River Watershed located in Jilin Prov-ince, China have been evaluated quantitatively by using a general circulation model (HadCM3) coupled with the Soil and Water Assessment Tool (SWAT) hydrological model. The model was calibrated and validated against the historical monitored data from 2005 to 2009. The streamflow was estimated by downscaling HadCM3 outputs to the daily mean temperature and precipitation series, derived for three 30-year time slices, 2020s, 2050s and 2080s. Results suggest that daily mean temperature increases with a changing rate of 0.435~C per decade, and precipitation decreases with a changing rate of 0.761 mm per decade. Compared with other seasons, the precipitation in summer shows significant downward trend, while a significant upward trend in autumn. The annual streamflow demonstrates a general down-ward trend with a decreasing rate of 0.405 m^3/s per decade. The streamflow shows significant downward and upward trends in summer and in autumn, respectively. The decreasing rate of streamflow in summer reaches 1.97 m^3/s per decade, which contributes primarily to the decrease of streamflow. The results of this work would be of great benifit to the design of economic and social development planning in the study area.展开更多
This study evaluates the seasonal cycle of the activity of convectively coupled equatorial waves(CCEWs),including mixed Rossby-gravity(MRG) and tropical depression-type(TD-type) waves,based on the twentieth century ex...This study evaluates the seasonal cycle of the activity of convectively coupled equatorial waves(CCEWs),including mixed Rossby-gravity(MRG) and tropical depression-type(TD-type) waves,based on the twentieth century experiments of 18 global climate models(GCMs) from the Coupled Model Intercomparison Project phase 3(CMIP3).The ensemble result of the 18 GCMs shows that the observed seasonal cycle of MRG and TD-type wave activity cannot be well reproduced.The seasonal transition of wave activity from the southern hemisphere to the northern hemisphere is delayed from April in the observations to May in the simulations,indicating that the simulated active season of tropical waves in the northern hemisphere is delayed and shortened.This delayed seasonal transition of tropical wave activity is associated with a delayed seasonal transition of simulated mean precipitation.The mean precipitation in April and May shows a double-ITCZ problem,and the horizontal resolution is important to the delayed seasonal transition of wave activity.Because of the coincident seasonal cycle of MRG and TD-type wave activity and tropical cyclone(TC) geneses,the delayed seasonal transition of wave activity may imply a similar problem of TC genesis in the GCMs,namely,a delayed and shortened TC season in the northern hemisphere.展开更多
This study evaluates the simulation of summer rainfall changes in the Northern Indian Ocean (NIO) based on the fifth phase of Coupled Model Intercomparison Project (CMIP5). The historical runs of 20 CMIP5 coupled Gene...This study evaluates the simulation of summer rainfall changes in the Northern Indian Ocean (NIO) based on the fifth phase of Coupled Model Intercomparison Project (CMIP5). The historical runs of 20 CMIP5 coupled General Circulation Models (GCMs) are analyzed. The Multi-Model ensemble (MME) of the CMIP5 models well reproduces the general feature of NIO summer rainfall. For a short period 1979?2005, 14 out of 20 models show an increased trend in the mean rainfall and a similar spatial distri-bution to the Global Precipitation Climatology Project (GPCP) observations in MME. The increasing of the convergence in the equatorial IO results in the increase of rainfall significantly. The equatorial rainfall trend patterns seem modulated by the SST warm-ing in the tropical Indian Ocean, which confirm the mechanism of 'warmer-get-wetter' theory. For a long period 1950?2005, the trend of monsoon rainfall over India shows a decrease over the most parts of the India except an increase over the south corn er of the Indian Peninsula, due to a weakened summer monsoon circulation. The pattern is well simulated in half of the CMIP5 models. The rainfall over the north India is different for a short period, in which rainfall increases in 1979?2005, implying possible decadal varia-tion in the NIO summer climate.展开更多
Rainfall and air temperature data from six meteorological stations above the Bengbu Sluice and hydrological and water resources evaluation data from the Bengbu Hydrological Station in the Huai River Basin from 1961 to...Rainfall and air temperature data from six meteorological stations above the Bengbu Sluice and hydrological and water resources evaluation data from the Bengbu Hydrological Station in the Huai River Basin from 1961 to 2008 are used to analyze the impact of changes in climatic factors on the amount of water resources in the Basin. There was a general trend of rise in its average annual air temperature, with the highest increase of 0.289℃/10a recorded at Bengbu in Anhui Province. Rising rainfall was mainly observed in the western part of the study area, while rainfall actually declined in the eastern part, i.e. the middle reaches of the Huai River. The Average rainfall in the study area was in a vaguely declining trend. In other words, the rainfall in the Basin is still much affected by natural fluctuations. On the whole, there was a trend of gradual decrease in the quantity of the Basin's water resources for the period under study. Water resources quantity is found to fall with decreasing rainfall and rising air temperature. Regression analysis is used to establish a mathematical model between water resources quantity and climatic factors (i.e. air temperature and rainfall) in order to explore the impact of climate change on water resources in the Basin. Moreover, various scenarios are set to quantitatively analyze the response of water resources to climate change. Sensitivity analysis shows that changes in rainfall have a much bigger impact on its water resources quantity than changes in its air temperature.展开更多
An epidemiological survey of anisakid nematodes was conducted on 205 specimens of horse mackerel (Trachurus trachurus) and 183 of axillary seabream (Pagellus acarne) captured in the zone between Tangier and Larach...An epidemiological survey of anisakid nematodes was conducted on 205 specimens of horse mackerel (Trachurus trachurus) and 183 of axillary seabream (Pagellus acarne) captured in the zone between Tangier and Larache in the north Atlantic Moroccan's coasts. Three species of nematodes were morphologically identified: Anisakis simplex s.l., Hysterothylacium sp., Pseudotarranova sp. According to the season, the nematode most observed in T. trachurus was .4. simplex s.1. (the highest values of prevalence (100%), the mean intensity (48.6). Hysterothylacium sp. was the most frequent anisakid in P. acarne with 100% of prevalence and 34.46 of the mean intensity. The infestation parameters were also analyzed according to the host species length, noting a maximum of infected fish by Anisakis simplex s.1. (96%) in samples of horse mackerel larger than 28 cm, while in axiliary seabream, the highest prevalence of infestation by Hysterothylacium sp. (100%) was found in fish more than 29 cm.展开更多
Cloud cavitating flow is highly turbulent and dominated by coherent large-scale anisotropic vortical structures. For the numer- ical investigation of such a class of flow, large eddy simulation (LES) is a reliable m...Cloud cavitating flow is highly turbulent and dominated by coherent large-scale anisotropic vortical structures. For the numer- ical investigation of such a class of flow, large eddy simulation (LES) is a reliable method but it is computationally extremely costly in engineering applications. An efficient approach to reduce the computational cost is to combine Reynolds-averaged Navier-Stokes (RANS) equations with LES used only in the parts of interest, such as massively separated flow regions. A new hybrid RANS/LES model, the modified filter-based method (FBM), is proposed in the present study which can perform RANS or LES depending on the numerical resolution. Compared to the original FBM, the new method has three modifications: the state-of-the-art shear stress transport (SST) model replaces the k-c model as a baseline RANS model. A shielding function is introduced to obviate the switch from RANS to LES occurring inside the boundary layer. An appropriate threshold controlling the switch from RANS to LES is added to achieve an optimal predictive accuracy. The new model is assessed for its predictive capability of highly unsteady cavitating flows in a typical case of cloud cavitation around a NACA66 hydrofoil. The new mod- el results are compared with data obtained from the Smagorinsky LES and SST model based on the same homogeneous Zwart cavitation model. It is found that the modified FBM method has significant advantages over SST model in all aspects of pre- dicted instantaneous and mean flow field, and its predictive accuracy is comparable to the Smagorinsky LES model even using a much coarser grid in the simulations.展开更多
Pressure-swirl atomizers are often employed to generate a water-mist spray,typically employed in fire suppression.In the present study,an experimental characterization of dispersion(velocity and cone angle)and atomiza...Pressure-swirl atomizers are often employed to generate a water-mist spray,typically employed in fire suppression.In the present study,an experimental characterization of dispersion(velocity and cone angle)and atomization(drop-size axial evolution)was carried out following a previously developed methodology,with specific reference to the initial region of the spray.Laser-based techniques were used to quantitatively evaluate the considered phenomena:velocity field was reconstructed through a Particle Image Velocimetry analysis;drop-size distribution was measured by a Malvern Spraytec device,highlighting secondary atomization and subsequent coalescence along the spray axis.Moreover,a comprehensive set of relations was validated as predictive of the involved parameters,following an inviscid-fluid approach.The proposed model pertains to early studies on pressure-swirl atomizers and primarily yields to determine both initial velocity and cone angle.The spray thickness is also predicted and a classic correlation for Sauter Mean Diameter is shown to provide good agreement with experimental results.The analysis was carried out at the operative pressure of 80 bar;two injectors were employed featuring different orifice diameters and flow numbers,as a sort of parametric approach to this spray typology.展开更多
基金Supported by the National Natural Science Foundation of China(No. 40706008)the Open Research Program of the Chinese Academy Sciences Key Laboratory of Tropical Marine Environmental Dynamics (No. LED0606)+1 种基金the Shandong Province Natural Science Foundation (No. Z2008E02)the National High Technology Research and Development Program of China (863 Program) (No.2008AA09A402)
文摘The inflow angle of tropical cyclones (TC) is generally neglected in numerical studies of ocean surface waves induced by TC. In this study, the impacts of TC inflow angle on ocean surface waves were investigated using a high-resolution wave model. Six numerical experiments were conducted to examine, in detail, thc effects of inflow angle on mean wave parameters and the spectrum of wave directions. A comparison of the waves simulated in these experiments shows that inflow angle significantly modifies TC-induced ocean surface waves. As the inflow angle increases, the asymmetric axis of the significant wave height (SWH) field shifts 30° clockwise, and the maximum SWH moves from the front-right to the rear-right quadrant. Inflow angle also affects other mean wave parameters, especially in the rear-left quadrant, such as the mean wave direction, the mean wavelength, and the peak direction. Inflow angle is a key factor in wave models for the reproduction of double-peak or multi-peak patterns in the spectrum of wave directions. Sensitivity experiments also show that the simulation with a 40° inflow angle is the closest to that of the NOAA statistical SLOSH inflow angle. This suggests that 40° can be used as the inflow angle in future TC-induced ocean surface wave simulations when SLOSH or observed inflow angles are not available.
文摘For the assessment of the impact of future climate change on the hydrologic regime and water resources of Peninsular Malaysia, it is necessary to downscale the climate change simulations of a coarse scale General Circulation Model to the region of Peninsular Malaysia at fine grid resolution. This paper presents a desktop review of the state of climate change parameters, namely rainfall and river flow over the Peninsular Malaysia for the 2041-2050 projection period. Analysis of the results from the models shows there will be a substantial increase in mean monthly precipitation over the North East Coastal region from historical 259.5 mm to 281.5 mm, from 289.0 mm to 299.0 mm and 221.8 mm to 239.5 mm over Terengganu and Kelantan, respectively. Meanwhile, for river flow projection, it will be an expected increase in interannual and intraseasonal variability with increased hydrologic extremes (higher high flows, and lower low flows) at Kelantan, Pahang, Terengganu, and Kedah watersheds in the future.
基金sponsored by the Key Deployment Project of Chinese Academy of Sciences(Grant No.KZZD-EW-05-01)the National Science Foundation of China(Grant No.41072270)
文摘The characteristics of a new type of drainage channel with staggered indented sills for controlling debris flows were studied. The intermediate fluid in the non-viscous debris flow exhibited a helical movement, whereas the fluid near the sidewall had a stop-start movement pattern; the viscous debris flow exhibited a stable structure between the indented sills. The experimental results indicate that the mean velocity of the debris flow increased with increasing channel gradients, and the debris flow velocity was slightly affected by the angle of the sills. The average velocity of the non-viscous debris flow increased in the range of(0.5–1.5) interval between the indented sills, whereas the average velocity of the viscous debris flow increased initially and then decreased in the range of(0.75–1.25) interval between the indented sills. The depth of the non-viscous debris flow tended to gradually increase as the channel gradients increased, whereas the depth of the viscous debris flow gradually decreased as the channel gradients increased. When the discharge of the debris flow was constant, the angle and the interval between the indented sills had a slight effect on the depth of the viscous debris flow, whereas the depth of the non-viscous debris flow exhibited a different trend, as the sill angles and intervals were varied.
基金Under the auspices of Major Science and Technology Program for Water Pollution Control and Treatment(No.2009ZX07526-006-04-01)
文摘The impacts of future climate change on streamflow of the Dongliao River Watershed located in Jilin Prov-ince, China have been evaluated quantitatively by using a general circulation model (HadCM3) coupled with the Soil and Water Assessment Tool (SWAT) hydrological model. The model was calibrated and validated against the historical monitored data from 2005 to 2009. The streamflow was estimated by downscaling HadCM3 outputs to the daily mean temperature and precipitation series, derived for three 30-year time slices, 2020s, 2050s and 2080s. Results suggest that daily mean temperature increases with a changing rate of 0.435~C per decade, and precipitation decreases with a changing rate of 0.761 mm per decade. Compared with other seasons, the precipitation in summer shows significant downward trend, while a significant upward trend in autumn. The annual streamflow demonstrates a general down-ward trend with a decreasing rate of 0.405 m^3/s per decade. The streamflow shows significant downward and upward trends in summer and in autumn, respectively. The decreasing rate of streamflow in summer reaches 1.97 m^3/s per decade, which contributes primarily to the decrease of streamflow. The results of this work would be of great benifit to the design of economic and social development planning in the study area.
基金supported financially by the National Basic Research Program of China (Grant No.2010CB950403)the National Natural Science Foundation of China (Major Research,Grant No. 40890151+2 种基金Grant Nos.40921160379 and 41105047)supported by the National Science Council (Grant No. NSC98-2745-M-001-005-MY3)supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy
文摘This study evaluates the seasonal cycle of the activity of convectively coupled equatorial waves(CCEWs),including mixed Rossby-gravity(MRG) and tropical depression-type(TD-type) waves,based on the twentieth century experiments of 18 global climate models(GCMs) from the Coupled Model Intercomparison Project phase 3(CMIP3).The ensemble result of the 18 GCMs shows that the observed seasonal cycle of MRG and TD-type wave activity cannot be well reproduced.The seasonal transition of wave activity from the southern hemisphere to the northern hemisphere is delayed from April in the observations to May in the simulations,indicating that the simulated active season of tropical waves in the northern hemisphere is delayed and shortened.This delayed seasonal transition of tropical wave activity is associated with a delayed seasonal transition of simulated mean precipitation.The mean precipitation in April and May shows a double-ITCZ problem,and the horizontal resolution is important to the delayed seasonal transition of wave activity.Because of the coincident seasonal cycle of MRG and TD-type wave activity and tropical cyclone(TC) geneses,the delayed seasonal transition of wave activity may imply a similar problem of TC genesis in the GCMs,namely,a delayed and shortened TC season in the northern hemisphere.
基金supported by the National Basic Research Program of China(2012CB955603,2010CB-950302)the Chinese Academy of Sciences(XDA 05090404,LTOZZ1202)
文摘This study evaluates the simulation of summer rainfall changes in the Northern Indian Ocean (NIO) based on the fifth phase of Coupled Model Intercomparison Project (CMIP5). The historical runs of 20 CMIP5 coupled General Circulation Models (GCMs) are analyzed. The Multi-Model ensemble (MME) of the CMIP5 models well reproduces the general feature of NIO summer rainfall. For a short period 1979?2005, 14 out of 20 models show an increased trend in the mean rainfall and a similar spatial distri-bution to the Global Precipitation Climatology Project (GPCP) observations in MME. The increasing of the convergence in the equatorial IO results in the increase of rainfall significantly. The equatorial rainfall trend patterns seem modulated by the SST warm-ing in the tropical Indian Ocean, which confirm the mechanism of 'warmer-get-wetter' theory. For a long period 1950?2005, the trend of monsoon rainfall over India shows a decrease over the most parts of the India except an increase over the south corn er of the Indian Peninsula, due to a weakened summer monsoon circulation. The pattern is well simulated in half of the CMIP5 models. The rainfall over the north India is different for a short period, in which rainfall increases in 1979?2005, implying possible decadal varia-tion in the NIO summer climate.
基金supported by the National Natural Sciences Foundation of China (Project Nos. 51079132 and 50679075)the Special Research Fund Project of the Chinese Ministry of Water Resources (Grant No. 200801001)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20094101110002)the National Key Scientific and Technological Project on Water Pollution Control and Treatment of China (Project No. 2009ZX07210-006)
文摘Rainfall and air temperature data from six meteorological stations above the Bengbu Sluice and hydrological and water resources evaluation data from the Bengbu Hydrological Station in the Huai River Basin from 1961 to 2008 are used to analyze the impact of changes in climatic factors on the amount of water resources in the Basin. There was a general trend of rise in its average annual air temperature, with the highest increase of 0.289℃/10a recorded at Bengbu in Anhui Province. Rising rainfall was mainly observed in the western part of the study area, while rainfall actually declined in the eastern part, i.e. the middle reaches of the Huai River. The Average rainfall in the study area was in a vaguely declining trend. In other words, the rainfall in the Basin is still much affected by natural fluctuations. On the whole, there was a trend of gradual decrease in the quantity of the Basin's water resources for the period under study. Water resources quantity is found to fall with decreasing rainfall and rising air temperature. Regression analysis is used to establish a mathematical model between water resources quantity and climatic factors (i.e. air temperature and rainfall) in order to explore the impact of climate change on water resources in the Basin. Moreover, various scenarios are set to quantitatively analyze the response of water resources to climate change. Sensitivity analysis shows that changes in rainfall have a much bigger impact on its water resources quantity than changes in its air temperature.
文摘An epidemiological survey of anisakid nematodes was conducted on 205 specimens of horse mackerel (Trachurus trachurus) and 183 of axillary seabream (Pagellus acarne) captured in the zone between Tangier and Larache in the north Atlantic Moroccan's coasts. Three species of nematodes were morphologically identified: Anisakis simplex s.l., Hysterothylacium sp., Pseudotarranova sp. According to the season, the nematode most observed in T. trachurus was .4. simplex s.1. (the highest values of prevalence (100%), the mean intensity (48.6). Hysterothylacium sp. was the most frequent anisakid in P. acarne with 100% of prevalence and 34.46 of the mean intensity. The infestation parameters were also analyzed according to the host species length, noting a maximum of infected fish by Anisakis simplex s.1. (96%) in samples of horse mackerel larger than 28 cm, while in axiliary seabream, the highest prevalence of infestation by Hysterothylacium sp. (100%) was found in fish more than 29 cm.
基金supported by the National Natural Science Foundation of China(Grant No.51579118)
文摘Cloud cavitating flow is highly turbulent and dominated by coherent large-scale anisotropic vortical structures. For the numer- ical investigation of such a class of flow, large eddy simulation (LES) is a reliable method but it is computationally extremely costly in engineering applications. An efficient approach to reduce the computational cost is to combine Reynolds-averaged Navier-Stokes (RANS) equations with LES used only in the parts of interest, such as massively separated flow regions. A new hybrid RANS/LES model, the modified filter-based method (FBM), is proposed in the present study which can perform RANS or LES depending on the numerical resolution. Compared to the original FBM, the new method has three modifications: the state-of-the-art shear stress transport (SST) model replaces the k-c model as a baseline RANS model. A shielding function is introduced to obviate the switch from RANS to LES occurring inside the boundary layer. An appropriate threshold controlling the switch from RANS to LES is added to achieve an optimal predictive accuracy. The new model is assessed for its predictive capability of highly unsteady cavitating flows in a typical case of cloud cavitation around a NACA66 hydrofoil. The new mod- el results are compared with data obtained from the Smagorinsky LES and SST model based on the same homogeneous Zwart cavitation model. It is found that the modified FBM method has significant advantages over SST model in all aspects of pre- dicted instantaneous and mean flow field, and its predictive accuracy is comparable to the Smagorinsky LES model even using a much coarser grid in the simulations.
基金supported by Bettati Antincendio S.r.l. and Regione Emilia-Romagna
文摘Pressure-swirl atomizers are often employed to generate a water-mist spray,typically employed in fire suppression.In the present study,an experimental characterization of dispersion(velocity and cone angle)and atomization(drop-size axial evolution)was carried out following a previously developed methodology,with specific reference to the initial region of the spray.Laser-based techniques were used to quantitatively evaluate the considered phenomena:velocity field was reconstructed through a Particle Image Velocimetry analysis;drop-size distribution was measured by a Malvern Spraytec device,highlighting secondary atomization and subsequent coalescence along the spray axis.Moreover,a comprehensive set of relations was validated as predictive of the involved parameters,following an inviscid-fluid approach.The proposed model pertains to early studies on pressure-swirl atomizers and primarily yields to determine both initial velocity and cone angle.The spray thickness is also predicted and a classic correlation for Sauter Mean Diameter is shown to provide good agreement with experimental results.The analysis was carried out at the operative pressure of 80 bar;two injectors were employed featuring different orifice diameters and flow numbers,as a sort of parametric approach to this spray typology.