Arrays of large immobile boulders,which are often encountered in steep mountain streams,affect the timing and magnitude of sediment transport events through their interactions with the approach flow.Despite their impo...Arrays of large immobile boulders,which are often encountered in steep mountain streams,affect the timing and magnitude of sediment transport events through their interactions with the approach flow.Despite their importance in the quantification of the bedload rate,the collective influence of a boulder array on the approach timeaveraged and turbulent flow field has to date been overlooked.The overarching objective is,thus,to assess the collective effects of a boulder array on the time-averaged and turbulent flow fields surrounding an individual boulder within the array,placing particular emphasis on highlighting the bed shear stress spatial variability.The objective of this study is pursued by resolving and comparing the timeaveraged and turbulent flow fields developing around a boulder,with and without an array of isolated boulders being present.The results show that the effects of an individual boulder on the time-averaged streamwise velocity and turbulence intensity were limited to the boulder's immediate vicinity in the streamwise(x/d c < 2-3) and vertical(z/d c < 1) directions.Outside of the boulder's immediate vicinity,the time-averaged streamwise velocity was found to be globally decelerated.This global deceleration was attributed to the form drag generated collectively by the boulder array.More importantly,the boulder array reduced the applied shear stress exerted on theindividual boulders found within the array,by absorbing a portion of the total applied shear.Furthermore,the array was found to have a "homogenizing" effect on the near-bed turbulence thus significantly reducing the turbulence intensity in the near-bed region.The findings of this study suggest that the collective boulder array bears a portion of the total applied bed shear stress as form drag,hence reducing the available bed shear stress for transporting incoming mobile sediment.Thus,the effects of the boulder array should not be ignored in sediment transport predictions.These effects are encapsulated in this study by Equation(6).展开更多
On 23 July 2009, a catastrophic debris flows were triggered by heavy rainfall in Xiangshui gully, Kangding county, southwestern China. This debris flow originating shortly after a rainstorm with an intensity of 28 mm ...On 23 July 2009, a catastrophic debris flows were triggered by heavy rainfall in Xiangshui gully, Kangding county, southwestern China. This debris flow originating shortly after a rainstorm with an intensity of 28 mm per hour transported a total volume of more than 480×103 m3 debris, depositing the poorly sorted sediment including boulders up to 2-3 m in diameter both onto an existing debris fans and into the river. Our primary objective for this study was to analyze the characteristics of the triggering rainfall and the debris supply conditions, and to estimate debris-flow volume, mean velocity, and discharge. A comparison with adjacent rain-gage records indicates that debris flows in this setting can be produced in response to as little as 17 mm/hour or 3.5 mm/10-minute of rainfall intensity with relatively lower amount of cumulative antecedent rainfall. The field measurement and the interpretation of the Worldview image indicate that abundant landslides occurred on steep slopes within areas underlain by highly weathered granite. Using empirical equations that combine flow depth and channel slope, the mean velocity and discharge of the debris flow were estimated to be 9.2 m/s and 2150 m3/s, respectively. The results contribute to a better understanding of the conditions leading to catastrophic debris flows.展开更多
Langevin simulations are preformed on the depinning dynamics of fluid monolayer on a quenched substrate. With increase in the strength of the substrate, we find for the first time a crossover from elastic crystal to s...Langevin simulations are preformed on the depinning dynamics of fluid monolayer on a quenched substrate. With increase in the strength of the substrate, we find for the first time a crossover from elastic crystal to smectic flows as well as a crossover from smectic to plastic flows above the depinning. A power-law scaling relationship can be derived between the drift velocity and the driving force for both the elastic crystal and smectic flows, but fails to be obtained for the plastic flow. The power-law exponents are found to be no larger than 1 for the elastic crystal flow and larger than 1 for the smeetic flow. The critical driving force and the averaged intensity of Bragg peaks remain invariant basically in the regime of smectic flow. A sudden increase in the critical driving force is observed within the crossover from the smeetic to plastic flows, and the averaged intensity of Bragg peaks shows sudden decreases within the crossovers both from the elastic crystal to smectic flows and from the smectic to plastic flows. The results are helpful for understanding the slip dynamics of fluids on a molecular level.展开更多
An epidemiological survey of anisakid nematodes was conducted on 205 specimens of horse mackerel (Trachurus trachurus) and 183 of axillary seabream (Pagellus acarne) captured in the zone between Tangier and Larach...An epidemiological survey of anisakid nematodes was conducted on 205 specimens of horse mackerel (Trachurus trachurus) and 183 of axillary seabream (Pagellus acarne) captured in the zone between Tangier and Larache in the north Atlantic Moroccan's coasts. Three species of nematodes were morphologically identified: Anisakis simplex s.l., Hysterothylacium sp., Pseudotarranova sp. According to the season, the nematode most observed in T. trachurus was .4. simplex s.1. (the highest values of prevalence (100%), the mean intensity (48.6). Hysterothylacium sp. was the most frequent anisakid in P. acarne with 100% of prevalence and 34.46 of the mean intensity. The infestation parameters were also analyzed according to the host species length, noting a maximum of infected fish by Anisakis simplex s.1. (96%) in samples of horse mackerel larger than 28 cm, while in axiliary seabream, the highest prevalence of infestation by Hysterothylacium sp. (100%) was found in fish more than 29 cm.展开更多
In this paper,the CFD simulation and new flow unsteadiness analysis for a single-blade centrifugal pump with whole flow passage were carried out.The periodic flow unsteadiness has been quantitatively investigated in d...In this paper,the CFD simulation and new flow unsteadiness analysis for a single-blade centrifugal pump with whole flow passage were carried out.The periodic flow unsteadiness has been quantitatively investigated in detail by defining unsteady intensity and turbulence intensity in both rotor and volute domains under design condition Q=33 L s 1.The results show that the distributions of flow unsteadiness are the functions of impeller rotating angle and have complex unsteady characteristics.The obvious T u fluctuations can be also observed for different impeller positions.In addition,time-averaged unsteady intensity and time-averaged turbulence intensity were calculated by averaging the results of each mesh node for entire impeller revolution period to evaluate the strength distributions of flow unsteadiness directly and comprehensively.The accumulative results of an impeller revolution can directly show the positions and strength of the flow unsteadiness and turbulence intensity in both rotor and stator domains which can be an important aspect to be considered in the single-blade pump optimum design procedure for obtaining more stable inner flow of the pump and decreasing flow-induced vibration and noise.The flow unsteadiness in the side chamber cannot be neglected for an accurate prediction of the inner flow of the pump,and the optimizing design procedure for a single-blade pump impeller will not be accurate using CFD tool if the unsteady flow phenomenon in the side chamber is not considered.展开更多
基金supported by the United States National Science Foundation (Grant No. CBET1033732)
文摘Arrays of large immobile boulders,which are often encountered in steep mountain streams,affect the timing and magnitude of sediment transport events through their interactions with the approach flow.Despite their importance in the quantification of the bedload rate,the collective influence of a boulder array on the approach timeaveraged and turbulent flow field has to date been overlooked.The overarching objective is,thus,to assess the collective effects of a boulder array on the time-averaged and turbulent flow fields surrounding an individual boulder within the array,placing particular emphasis on highlighting the bed shear stress spatial variability.The objective of this study is pursued by resolving and comparing the timeaveraged and turbulent flow fields developing around a boulder,with and without an array of isolated boulders being present.The results show that the effects of an individual boulder on the time-averaged streamwise velocity and turbulence intensity were limited to the boulder's immediate vicinity in the streamwise(x/d c < 2-3) and vertical(z/d c < 1) directions.Outside of the boulder's immediate vicinity,the time-averaged streamwise velocity was found to be globally decelerated.This global deceleration was attributed to the form drag generated collectively by the boulder array.More importantly,the boulder array reduced the applied shear stress exerted on theindividual boulders found within the array,by absorbing a portion of the total applied shear.Furthermore,the array was found to have a "homogenizing" effect on the near-bed turbulence thus significantly reducing the turbulence intensity in the near-bed region.The findings of this study suggest that the collective boulder array bears a portion of the total applied bed shear stress as form drag,hence reducing the available bed shear stress for transporting incoming mobile sediment.Thus,the effects of the boulder array should not be ignored in sediment transport predictions.These effects are encapsulated in this study by Equation(6).
基金supported by Chengdu Hydroelectric Investigation & Design Institute, the Ministry of Science and Technology of China (Grant No. 2011CB409903)the Research Fund of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant No. 119-000022-18 and SKLGP2009Z2004)
文摘On 23 July 2009, a catastrophic debris flows were triggered by heavy rainfall in Xiangshui gully, Kangding county, southwestern China. This debris flow originating shortly after a rainstorm with an intensity of 28 mm per hour transported a total volume of more than 480×103 m3 debris, depositing the poorly sorted sediment including boulders up to 2-3 m in diameter both onto an existing debris fans and into the river. Our primary objective for this study was to analyze the characteristics of the triggering rainfall and the debris supply conditions, and to estimate debris-flow volume, mean velocity, and discharge. A comparison with adjacent rain-gage records indicates that debris flows in this setting can be produced in response to as little as 17 mm/hour or 3.5 mm/10-minute of rainfall intensity with relatively lower amount of cumulative antecedent rainfall. The field measurement and the interpretation of the Worldview image indicate that abundant landslides occurred on steep slopes within areas underlain by highly weathered granite. Using empirical equations that combine flow depth and channel slope, the mean velocity and discharge of the debris flow were estimated to be 9.2 m/s and 2150 m3/s, respectively. The results contribute to a better understanding of the conditions leading to catastrophic debris flows.
基金Supported partially by the Foundation of Henan Educational Committee under Grant No.2008A140011
文摘Langevin simulations are preformed on the depinning dynamics of fluid monolayer on a quenched substrate. With increase in the strength of the substrate, we find for the first time a crossover from elastic crystal to smectic flows as well as a crossover from smectic to plastic flows above the depinning. A power-law scaling relationship can be derived between the drift velocity and the driving force for both the elastic crystal and smectic flows, but fails to be obtained for the plastic flow. The power-law exponents are found to be no larger than 1 for the elastic crystal flow and larger than 1 for the smeetic flow. The critical driving force and the averaged intensity of Bragg peaks remain invariant basically in the regime of smectic flow. A sudden increase in the critical driving force is observed within the crossover from the smeetic to plastic flows, and the averaged intensity of Bragg peaks shows sudden decreases within the crossovers both from the elastic crystal to smectic flows and from the smectic to plastic flows. The results are helpful for understanding the slip dynamics of fluids on a molecular level.
文摘An epidemiological survey of anisakid nematodes was conducted on 205 specimens of horse mackerel (Trachurus trachurus) and 183 of axillary seabream (Pagellus acarne) captured in the zone between Tangier and Larache in the north Atlantic Moroccan's coasts. Three species of nematodes were morphologically identified: Anisakis simplex s.l., Hysterothylacium sp., Pseudotarranova sp. According to the season, the nematode most observed in T. trachurus was .4. simplex s.1. (the highest values of prevalence (100%), the mean intensity (48.6). Hysterothylacium sp. was the most frequent anisakid in P. acarne with 100% of prevalence and 34.46 of the mean intensity. The infestation parameters were also analyzed according to the host species length, noting a maximum of infected fish by Anisakis simplex s.1. (96%) in samples of horse mackerel larger than 28 cm, while in axiliary seabream, the highest prevalence of infestation by Hysterothylacium sp. (100%) was found in fish more than 29 cm.
基金supported by the National Outstanding Young Scientists Founds of China (Grant No. 50825902)Jiangsu Provincial Project for Innovative Postgraduates of China (Grant No.CX10B_262Z)
文摘In this paper,the CFD simulation and new flow unsteadiness analysis for a single-blade centrifugal pump with whole flow passage were carried out.The periodic flow unsteadiness has been quantitatively investigated in detail by defining unsteady intensity and turbulence intensity in both rotor and volute domains under design condition Q=33 L s 1.The results show that the distributions of flow unsteadiness are the functions of impeller rotating angle and have complex unsteady characteristics.The obvious T u fluctuations can be also observed for different impeller positions.In addition,time-averaged unsteady intensity and time-averaged turbulence intensity were calculated by averaging the results of each mesh node for entire impeller revolution period to evaluate the strength distributions of flow unsteadiness directly and comprehensively.The accumulative results of an impeller revolution can directly show the positions and strength of the flow unsteadiness and turbulence intensity in both rotor and stator domains which can be an important aspect to be considered in the single-blade pump optimum design procedure for obtaining more stable inner flow of the pump and decreasing flow-induced vibration and noise.The flow unsteadiness in the side chamber cannot be neglected for an accurate prediction of the inner flow of the pump,and the optimizing design procedure for a single-blade pump impeller will not be accurate using CFD tool if the unsteady flow phenomenon in the side chamber is not considered.