In the new century, energy and environmental problems are becoming more critical, and the development of natural energy is desired. Low-grade Thermal Energy Conversion(LTEC) is refocused as one of the renewable energy...In the new century, energy and environmental problems are becoming more critical, and the development of natural energy is desired. Low-grade Thermal Energy Conversion(LTEC) is refocused as one of the renewable energy methods. The usefulness of LTEC is expected using hot springs and waste heat. In the case of the Rankine cycle using ammonia as the working fluid, the thermal properties of the working fluid changes in the evaporator. The traditional evaluation method of heat exchanger performance is the LMTD(Logarithmic Mean Temperature Difference) method. On the other hand, the GMTD(Generalized Mean Temperature Difference) method allows the variation of thermal properties in the heat exchanger. The aim of this study is to compare the two methods for the calculation of temperature differences and the corresponding influence on the total performance of the Rankine cycle that is operated using ammonia as a working fluid. As a result, the thermal efficiency of the Rankine cycle is greater than that of the LMTD method. Moreover, the computable range of the GMTD calculation method is less than that of the LMTD calculation method.展开更多
In the present paper, the effect of variable fluid properties (density, viscosity, thermal conductivity and specific heat) on the convection in the classical Rayleigh-Benard problem is investigated. The investigatio...In the present paper, the effect of variable fluid properties (density, viscosity, thermal conductivity and specific heat) on the convection in the classical Rayleigh-Benard problem is investigated. The investigation concerns water, air, and engine oil by taking into account the variation of fluid properties with temperature. The results are obtained by numerically solving the governing equations, using the SIMPLE algorithm and covering large temperature differences. It is found that the critical Rayleigh number increases as the temperature difference increases considering all fluid properties variable. However, when the fluid properties are kept constant, calculated at the mean temperature, and only density is considered variable, the critical Rayleigh number either decreases or remains constant.展开更多
文摘In the new century, energy and environmental problems are becoming more critical, and the development of natural energy is desired. Low-grade Thermal Energy Conversion(LTEC) is refocused as one of the renewable energy methods. The usefulness of LTEC is expected using hot springs and waste heat. In the case of the Rankine cycle using ammonia as the working fluid, the thermal properties of the working fluid changes in the evaporator. The traditional evaluation method of heat exchanger performance is the LMTD(Logarithmic Mean Temperature Difference) method. On the other hand, the GMTD(Generalized Mean Temperature Difference) method allows the variation of thermal properties in the heat exchanger. The aim of this study is to compare the two methods for the calculation of temperature differences and the corresponding influence on the total performance of the Rankine cycle that is operated using ammonia as a working fluid. As a result, the thermal efficiency of the Rankine cycle is greater than that of the LMTD method. Moreover, the computable range of the GMTD calculation method is less than that of the LMTD calculation method.
文摘In the present paper, the effect of variable fluid properties (density, viscosity, thermal conductivity and specific heat) on the convection in the classical Rayleigh-Benard problem is investigated. The investigation concerns water, air, and engine oil by taking into account the variation of fluid properties with temperature. The results are obtained by numerically solving the governing equations, using the SIMPLE algorithm and covering large temperature differences. It is found that the critical Rayleigh number increases as the temperature difference increases considering all fluid properties variable. However, when the fluid properties are kept constant, calculated at the mean temperature, and only density is considered variable, the critical Rayleigh number either decreases or remains constant.