Sea level seasonal variations in the east of China seas from 2004 to 2006 are simulated by the advanced ROMS model. The results show similar sea level spatial features with TOPEX/Poseidon observations, with annual ran...Sea level seasonal variations in the east of China seas from 2004 to 2006 are simulated by the advanced ROMS model. The results show similar sea level spatial features with TOPEX/Poseidon observations, with annual ranges decreasing gradually from the sea coast to the Kuroshio region. By getting rid of wind stress in ROMS model, the simulated sea level results still show obvious seasonal variations. However, the phenomenon of sea level anomaly disappears in Min Zhe Current Coastwise (MZCF) and Su Bei current coastwise (SBCF), and the change of it from coastal area to ocean recedes. The seal level difference between Bohai, Yellow Sea (BYS) and East China Sea (ECS) becomes weaker in spring and autumn. The annual differences decrease obviously, and the gradual change of annual ranges from seacoast to the Kuroshio almost disappears. The annual ranges in BYS are nearly identical. The annual range ratio without the wind stress to with the wind stress increases gradually from the sea coast to Kuroshio region.展开更多
Seasonal dynamics of above- and belowground biomass and nutrient characteristics (nitrogen, carbon, and phosphorus) of Carex lasiocarpa were investigated in the typical wetland of Sanjiang Plain, China from May 2007...Seasonal dynamics of above- and belowground biomass and nutrient characteristics (nitrogen, carbon, and phosphorus) of Carex lasiocarpa were investigated in the typical wetland of Sanjiang Plain, China from May 2007 to September 2008. The results show that the changes of aboveground biomass during the growing season are best described by the twice function curve model, whereas the changes of belowground biomass follow the exponential increase curve model. Both the organic carbon contents in the above- and belowground plant parts show significant positive linear correlations with the growing time, and the coefficients R2 are 0.983 and 0.746, respectively. The carbon accu-mulations of the above- and belowground plant parts during the growing season show the same dynamics as those of the biomass. However, the nitrogen contents and accumulation in C. lasiocarpa aboveground and belowground parts show exponential increase during the growing season. The dynamics of C. lasiocarpa phosphorus contents follows the twice function curve model, whereas the accumulation of phosphorus shows the linear increase. The ratios of C/N in different parts of C. lasiocarpa fit the negative linear relations with total nitrogen content in the growing season. Moreover, the ratios of C/P in C. lasiocarpa plant also fit the negative linear relations with total phosphorus content. The results show that nitrogen is the primary limiting nutrient for C. lasiocarpa growth as compared with carbon and phosphorus.展开更多
The global long-term sea level trend is obtained from the analysis of tide gauge data and TOPEX/Poseidon data. The linear trend of global mean sea level is highly non-uniform spatially, with an average rate of 2.2 mmy...The global long-term sea level trend is obtained from the analysis of tide gauge data and TOPEX/Poseidon data. The linear trend of global mean sea level is highly non-uniform spatially, with an average rate of 2.2 mmyear^-1 in T/P sea-level rise from October 1992 to September 2002. Sea level change due to temperature variation (the thermosteric sea level) is discussed. The results are compared with TOPEX/Poseidon altimeter data in the same temporal span at different spatial scales. It is indicated that the thermal effect accounts for 86% and 73% of the observed seasonal variability in the northern and southern hemispheres, respectively. The TOPEX/Poseidon observed sea level lags behind the TSL by 2 months in the zonal band of 40%-60% in both the northern and southern hemispheres. Systematic differences of about 1-2 cm between TOPEX/Poseidon observations and thermosteric sea level data are obtained. The potential causes tbr these differences include water exchange among the atmosphere, land, and oceans, and some possible deviations in thermosteric contribution estimates and geophysical corrections to the TOPEX/Poseidon data.展开更多
The multi-level ditch system developed in the Sanjiang Plain,Northeast China has sped up water drainage process hence transferred more pollutants from farmlands into the rivers of this region.Understanding the seasona...The multi-level ditch system developed in the Sanjiang Plain,Northeast China has sped up water drainage process hence transferred more pollutants from farmlands into the rivers of this region.Understanding the seasonal dynamics of nitrogen (N) and phosphorus (P) transportation in the ditch system and the role of different ditch size is thus crucial for water pollution control of the rivers in the Sanjiang Plain.In this study,an investigation was conducted in the Nongjiang watershed of the Sanjiang Plain to study the nutrient variation and the correlation between water and sediments in the ditch system in terms of ditch level.Water and sediments samples were collected in each ditch level in growing season at regular intervals (once per month),and TN,NO 3--N,NH 4+-N,TP,and PO 4 3--P were analyzed.The results show that nutrient contents in water were higher in June and July,especially in July,the contents of TN and TP were 3.21mg/L and 0.84mg/L in field ditch,4.04mg/L and 1.06mg/L in lateral ditch,2.46mg/L and 0.70mg/L in branch ditch,1.92mg/L and 0.63mg/L in main ditch,respectively.In August and September,the nutrient contents in the water were relatively lower.The peak value of nutrient in ditch water had been moving from the field ditch to the main ditch over time,showing a remarkable impact of ditch system on river water environment.The nutrient transfer in ditch sediments could only be found in rainfall season.Nutrient contents in ditch sediment had effect on that in ditch water,but nutrients in ditch water and sediments had different origination.Ditch management in terms of the key fac-tors is hence very important for protecting river water environment.展开更多
Using NCEP/NCAR reanalysis data and monthly precipitation over 160 conventional stations in China, analyses of moisture transport characteristics and corresponding precipitation variation in the east part of China in ...Using NCEP/NCAR reanalysis data and monthly precipitation over 160 conventional stations in China, analyses of moisture transport characteristics and corresponding precipitation variation in the east part of China in summer are made, and studies are carried out on possible influence on moisture transport and precipitation in summer by the variation of Antarctic Oscillation (AAO). The results show that the abnormal variation of the AAO affected the summer precipitation in China significantly. The variation of AAO can cause the variation of intension and location of Northwestern Pacific High, which in turn cause the variation of summer monsoon rainfall in the eastern China.展开更多
It is well known that suppressed convection in the tropical western North Pacific(WNP) induces an anticyclonic anomaly,and this anticyclonic anomaly results in more rainfall along the East Asian rain band through more...It is well known that suppressed convection in the tropical western North Pacific(WNP) induces an anticyclonic anomaly,and this anticyclonic anomaly results in more rainfall along the East Asian rain band through more water vapor transport during summer, as well as early and middle summer. However, the present results indicate that during late summer(from mid-August to the beginning of September), the anomalous anticyclone leads to more rainfall over central southern China(CSC), a region quite different from preceding periods. The uniqueness of late summer is found to be related to the dramatic change in climatological monsoon flows: southerlies over southern China during early and middle summer but easterlies during late summer. Therefore, the anomalous anticyclone, which shows a southerly anomaly over southern China, enhances monsoonal southerlies and induces more rainfall along the rain band during early and middle summer. During late summer,however, the anomalous anticyclone reflects a complicated change in monsoon flows: it changes the path, rather than the intensity, of monsoon flows. Specifically, during late summers of suppressed convection in the tropical WNP, southerlies dominate from the South China Sea to southern China, and during late summers of enhanced convection, northeasterlies dominate from the East China Sea to southern China, causing more and less rainfall in CSC, respectively.展开更多
The neon flying squid, Ommastrephes bartramii, is a species of economically important cephalopod in the Northwest Pacific Ocean. Its short lifespan increases the susceptibility of the distribution and abundance to the...The neon flying squid, Ommastrephes bartramii, is a species of economically important cephalopod in the Northwest Pacific Ocean. Its short lifespan increases the susceptibility of the distribution and abundance to the direct impact of the environmental conditions. Based on the generalized linear model(GLM) and generalized additive model(GAM), the commercial fishery data from the Chinese squid-jigging fleets during 1995 to 2011 were used to examine the interannual and seasonal variability in the abundance of O. bartramii, and to evaluate the influences of variables on the abundance(catch per unit effort, CPUE). The results from GLM suggested that year, month, latitude, sea surface temperature(SST), mixed layer depth(MLD), and the interaction term(SST×MLD) were significant factors. The optimal model based on GAM included all the six significant variables and could explain 42.43% of the variance in nominal CPUE. The importance of the six variables was ranked by decreasing magnitude: year, month, latitude, SST, MLD and SST×MLD. The squid was mainly distributed in the waters between 40?N and 44?N in the Northwest Pacific Ocean. The optimal ranges of SST and MLD were from 14 to 20℃ and from 10 to 30 m, respectively. The squid abundance greatly fluctuated from 1995 to 2011. The CPUE was low during 1995–2002 and high during 2003–2008. Furthermore, the squid abundance was typically high in August. The interannual and seasonal variabilities in the squid abundance were associated with the variations of marine environmental conditions and the life history characteristics of squid.展开更多
The seasonal generation and evolution of eddies in the region of the North Pacific Subtropical Countercurrent remain poorly understood due to the scarcity of available data.We used TOPEX/POSEIDON altimetry data from 1...The seasonal generation and evolution of eddies in the region of the North Pacific Subtropical Countercurrent remain poorly understood due to the scarcity of available data.We used TOPEX/POSEIDON altimetry data from 1992 to 2007 to study the eddy field in this zone.We found that velocity shear between this region and the neighboring North Equatorial Current contributes greatly to the eddy generation.Furthermore,the eddy kinetic energy level(EKE) shows an annual cycle,maximum in April/May and minimum in December/January.Analyses of the temporal and spatial distributions of the eddy field revealed clearly that the velocity shear closely related to baroclinic instability processes.The eddy field seems to be more zonal than meridional,and the energy containing length scale shows a surprising lag of 2-3 months in comparison with the 1-D and 2-D EKE level.A similar phenomenon is observed in individual eddies in this zone.The results show that in this eddy field band,the velocity shear may drive the EKE level change so that the eddy field takes another 2-3 months to grow and interact to reach a relatively stable state.This explains the seasonal evolution of identifiable eddies.展开更多
Zonal heat advection (ZHA) plays an important role in the variability of the thermal structure in the tropical Pacific Ocean, especially in the western Pacific warm pool (WPWP). Using the Simple Ocean Data Assimil...Zonal heat advection (ZHA) plays an important role in the variability of the thermal structure in the tropical Pacific Ocean, especially in the western Pacific warm pool (WPWP). Using the Simple Ocean Data Assimilation (SODA) Version 2.02/4 for the period 1958-2007, this paper presents a detailed analysis of the climatological and seasonal ZHA in the tropical Pacific Ocean. Climatologically, ZHA shows a zonal- band spatial pattern associated with equatorial currents and contributes to forming the irregular eastern boundary of the WPWP (EBWP). Seasonal variation of ZHA with a positive peak from February to July is most prominent in the Nifio3.4 region, where the EBWP is located. The physical mechanism of the seasonal cycle in this region is examined. The mean advection of anomalous temperature, anomalous advection of mean temperature and eddy advection account for 31%, 51%, and 18% of the total seasonal variations, respectively. This suggests that seasonal changes of the South Equatorial Current induced by variability of the trade winds are the dominant contributor to the anomalous advection of mean temperature and hence, the seasonality of ZHA. Heat budget analysis shows that ZHA and surface heat flux make comparable contributions to the seasonal heat variation in the Nifio3.4 region, and that ZHA cools the upper ocean throughout the calendar year except in late boreal spring. The connection between ZHA and EBWP is further explored and a statistical relationship between EBWP, ZHA and surface heat flux is established based on least squares fitting.展开更多
It is well known that precipitation anomalies in the tropical western North Pacific (WNP) significantly affect circulation and rainfall in East Asia during summer. In this study, the authors further investigated thi...It is well known that precipitation anomalies in the tropical western North Pacific (WNP) significantly affect circulation and rainfall in East Asia during summer. In this study, the authors further investigated this relationship, by examining the anomalies associated with positive and negative precipitation anomalies in the tropical WNP. The results suggest these anomalies are asymmetric between the enhanced and suppressed WNP rainfall. Positive precipitation anomalies over the WNP, in comparison with their negative counterparts, are more closely related to the meridional teleconnection pattern and rainfall anomalies along the East Asian rain belt. The implications of the results are discussed.展开更多
The intensity of interannual variability(IIV)of the monsoon and monsoon–ENSO biennial relationship(MEBR)were examined and compared for both the Indian summer monsoon(ISM)and western North Pacific summer monsoon(WNPSM...The intensity of interannual variability(IIV)of the monsoon and monsoon–ENSO biennial relationship(MEBR)were examined and compared for both the Indian summer monsoon(ISM)and western North Pacific summer monsoon(WNPSM)during 1958–2018.Covariability of the IIV and MEBR were identified for the two monsoons.When the MEBR was strong(weak),the IIV of the monsoon was observed to be large(small).This rule applied to both the ISM and WNPSM.Out-ofphase relationships were found between the ISM and the WNPSM.When the IIV and MEBR of the ISM were strong(weak),those of the WNPSM tended to be weak(strong).During the period with a stronger(weaker)ENSO–Atlantic coupling after(before)the mid-1980 s,the IIV and MEBR of the WNPSM(ISM)were observed to be stronger.The increasing influences from the tropical Atlantic sea surface temperature(SST)may trigger the observed seesaw pattern of the ISM and WNPSM in terms of the IIV and MEBR multidecadal variability.The results imply that tropical Atlantic SST may need to be given more attention and consideration when predicting future monsoon variability of the ISM and WNPSM.展开更多
Annual Rossby wave is a key component of the ENSO phenomenon in the equatorial Pacific Ocean. Due to the paucity and seasonal bias in historical hydrographic data,previous studies on equatorial Rossby waves only gave ...Annual Rossby wave is a key component of the ENSO phenomenon in the equatorial Pacific Ocean. Due to the paucity and seasonal bias in historical hydrographic data,previous studies on equatorial Rossby waves only gave qualitative description. The accumulation of Argo measurements in recent years has greatly alleviated the data problem. In this study,seasonal variation of the equatorial Pacific Ocean is examined with annual harmonic analysis of Argo gridded data. Results show that strong seasonal signal is present in the western equatorial Pacific and explains more than 50% of the thermal variance below 500 m. Lag-correlation tracing further shows that this sub-thermocline seasonal signal originates from the eastern equatorial Pacific via downward and southwestward propagation of annual Rossby waves. Possible mechanisms for the equatorward shift of Rossby wave path are also discussed.展开更多
Based on the pentad mean ridgeline index of the western Pacific subtropical high (WPSH), the authors identified the two northward jumps of the WPSH from 1979 to 2008 and revealed their associations with the tropical S...Based on the pentad mean ridgeline index of the western Pacific subtropical high (WPSH), the authors identified the two northward jumps of the WPSH from 1979 to 2008 and revealed their associations with the tropical SST anomalies. The authors show that the northward jumps, especially the second jump, exhibited remarkable interannual variability. In addition, the authors find that the two northward jumps were mutually independent and were influenced by the SST anomalies in the different regions of the tropical Pacific. The first jump was positively correlated with the SST anomalies in the tropical central Pacific from the preceding winter to June. In contrast, the second jump was positively related to ENSO in the preceding winter, but this correlation tended to weaken with the decay of ENSO and disappeared in July. Instead, a positive correlation was found in the Indian Ocean. We therefore suggest that ENSO plays an indirect role in the second jump through the capacitor effect of the Indian Ocean.展开更多
A new regional coupled ocean–atmosphere model,WRF4-LICOM,was used to investigate the impacts of regional air–sea coupling on the simulation of the western North Pacific summer monsoon(WNPSM),with a focus on the norm...A new regional coupled ocean–atmosphere model,WRF4-LICOM,was used to investigate the impacts of regional air–sea coupling on the simulation of the western North Pacific summer monsoon(WNPSM),with a focus on the normal WNPSM year 2005.Compared to WRF4,WRF4-LICOM improved the simulation of the summer mean monsoon rainfall,circulations,sea surface net heat fluxes,and propagations of the daily rainband over the WNP.The major differences between the models were found over the northern South China Sea and east of the Philippines.The warmer SST reduced the gross moist stability of the atmosphere and increased the upward latent heat flux,and then drove local ascending anomalies,which led to the increase of rainfall in WRF4-LICOM.The resultant enhanced atmospheric heating drove a low-level anomalous cyclone to its northwest,which reduced the simulated circulation biases in the stand-alone WRF4 model.The local observed daily SST over the WNP was a response to the overlying summer monsoon.In the WRF4 model,the modeled atmosphere exhibited passive response to the underlying daily SST anomalies.With the inclusion of regional air–sea coupling,the simulated daily SST–rainfall relationship was significantly improved.WRF4-LICOM is recommended for future dynamical downscaling of simulations and projections over this region.展开更多
Expecting that agricultural yield is highly dependent on climatic conditions, particularly water availability and suitable temperature, an agroclimatic study was carried out on rice crops during three different season...Expecting that agricultural yield is highly dependent on climatic conditions, particularly water availability and suitable temperature, an agroclimatic study was carried out on rice crops during three different seasons in four regions of Bangladesh. Data on climate (surface air temperature and precipitation) and seasonal rice production were examined for the period 1986-2006 from 18 rice growth observatories. The relationship between climate and rice production was statistically analyzed by removing long-term trends so that the effects of improved irrigation, which results in a general increase in crop production, may be removed. The analysis involved both single and multiple regressions. The results suggested that, during monsoon and summer, higher temperatures had negative effects on rice production, especially in the northwestern (NW) region. In winter, positive effects were observed throughout Bangladesh. Since the annual mean temperature was positively correlated with those in the three seasons individually, the annual temperature had negative effects on the annual rice production only in the NW region, while it had positive effects in the central and southern regions. With the exception of the NW region, it was basically dry, excessive rainfall both in summer and monsoon yielded floods and reduced rice yield. In winter, more rainfall showed positive effects on crop production only in the central region, which was least irrigated. These findings suggested that accelerated atmospheric warming would result in serious damage to crops during summer and monsoon. Reliable prediction of future crop production will rely on the temperature and rainfall trends in individual seasons.展开更多
Based on an observational analysis, seven numerical experiments are designed to study the impacts of Pacific SSTA on summer precipitation over eastern China and relevant physical mechanism by NCAR CCM3. The numerical ...Based on an observational analysis, seven numerical experiments are designed to study the impacts of Pacific SSTA on summer precipitation over eastern China and relevant physical mechanism by NCAR CCM3. The numerical simulation results show that preceding winter SSTA in the Kuroshio region leads to summer precipitation anomaly over the Yangtze River valleys by modifying atmospheric general circulation over eastern Asia and middle-high latitude. West Pacific subtropical high is notably affected by preceding spring SSTA over the middle and east of Equator Pacific; SSTA of the central region of middle latitude in the corresponding period causes the summer rainfall anomaly over eastern China so as to trigger the atmospheric Eurasia-Pacific teleconnection pattern.展开更多
基金supported by the National Natural Science Foundation of China(contract No.41006002,No.41206013 and No.41106004)Open Fund of State Key Laboratory of Satellite Ocean Environment Dynamics,Second Institute of Oceanography of SOA(contract No.SOED1305)+3 种基金Open Fund of the Key Laboratory of Ocean Circulation and Waves,Chinese Academy of Sciences(contract No.KLOCAW1302)the Public Science and Technology Research Funds Projects of Ocean(contract No.200905001,No.201005019,and No.201205018)the Natural Science Foundation of State Ocean Administration(contract No.2012202,No.2012223,and No.2012224)Open Fund of Key Laboratory of Physical Oceanography,MOE(contract of Song jun)
文摘Sea level seasonal variations in the east of China seas from 2004 to 2006 are simulated by the advanced ROMS model. The results show similar sea level spatial features with TOPEX/Poseidon observations, with annual ranges decreasing gradually from the sea coast to the Kuroshio region. By getting rid of wind stress in ROMS model, the simulated sea level results still show obvious seasonal variations. However, the phenomenon of sea level anomaly disappears in Min Zhe Current Coastwise (MZCF) and Su Bei current coastwise (SBCF), and the change of it from coastal area to ocean recedes. The seal level difference between Bohai, Yellow Sea (BYS) and East China Sea (ECS) becomes weaker in spring and autumn. The annual differences decrease obviously, and the gradual change of annual ranges from seacoast to the Kuroshio almost disappears. The annual ranges in BYS are nearly identical. The annual range ratio without the wind stress to with the wind stress increases gradually from the sea coast to Kuroshio region.
基金This research was supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX2–YW–309)the Major State Basic Research Development Program of China (973 Program No. 2004CB418507)
文摘Seasonal dynamics of above- and belowground biomass and nutrient characteristics (nitrogen, carbon, and phosphorus) of Carex lasiocarpa were investigated in the typical wetland of Sanjiang Plain, China from May 2007 to September 2008. The results show that the changes of aboveground biomass during the growing season are best described by the twice function curve model, whereas the changes of belowground biomass follow the exponential increase curve model. Both the organic carbon contents in the above- and belowground plant parts show significant positive linear correlations with the growing time, and the coefficients R2 are 0.983 and 0.746, respectively. The carbon accu-mulations of the above- and belowground plant parts during the growing season show the same dynamics as those of the biomass. However, the nitrogen contents and accumulation in C. lasiocarpa aboveground and belowground parts show exponential increase during the growing season. The dynamics of C. lasiocarpa phosphorus contents follows the twice function curve model, whereas the accumulation of phosphorus shows the linear increase. The ratios of C/N in different parts of C. lasiocarpa fit the negative linear relations with total nitrogen content in the growing season. Moreover, the ratios of C/P in C. lasiocarpa plant also fit the negative linear relations with total phosphorus content. The results show that nitrogen is the primary limiting nutrient for C. lasiocarpa growth as compared with carbon and phosphorus.
基金supported by the NSFC projects (Nos. 40376005, 40676013, 40506006 and 40676015)the SRFDP project (No. 20060423014)+1 种基金NCET-04-0646 Key Scientific Research Program (No. 2007CB411807)National Key Technology R&D Program (No. 2007BAC- 03A06-06)
文摘The global long-term sea level trend is obtained from the analysis of tide gauge data and TOPEX/Poseidon data. The linear trend of global mean sea level is highly non-uniform spatially, with an average rate of 2.2 mmyear^-1 in T/P sea-level rise from October 1992 to September 2002. Sea level change due to temperature variation (the thermosteric sea level) is discussed. The results are compared with TOPEX/Poseidon altimeter data in the same temporal span at different spatial scales. It is indicated that the thermal effect accounts for 86% and 73% of the observed seasonal variability in the northern and southern hemispheres, respectively. The TOPEX/Poseidon observed sea level lags behind the TSL by 2 months in the zonal band of 40%-60% in both the northern and southern hemispheres. Systematic differences of about 1-2 cm between TOPEX/Poseidon observations and thermosteric sea level data are obtained. The potential causes tbr these differences include water exchange among the atmosphere, land, and oceans, and some possible deviations in thermosteric contribution estimates and geophysical corrections to the TOPEX/Poseidon data.
基金Under the auspices of Major State Basic Research Development Program of China (No.2007CB407307)National Key Technology Research and Development Program of China (No.2006BAC15B01)National Natural Science Foundation of China (No. 40671182)
文摘The multi-level ditch system developed in the Sanjiang Plain,Northeast China has sped up water drainage process hence transferred more pollutants from farmlands into the rivers of this region.Understanding the seasonal dynamics of nitrogen (N) and phosphorus (P) transportation in the ditch system and the role of different ditch size is thus crucial for water pollution control of the rivers in the Sanjiang Plain.In this study,an investigation was conducted in the Nongjiang watershed of the Sanjiang Plain to study the nutrient variation and the correlation between water and sediments in the ditch system in terms of ditch level.Water and sediments samples were collected in each ditch level in growing season at regular intervals (once per month),and TN,NO 3--N,NH 4+-N,TP,and PO 4 3--P were analyzed.The results show that nutrient contents in water were higher in June and July,especially in July,the contents of TN and TP were 3.21mg/L and 0.84mg/L in field ditch,4.04mg/L and 1.06mg/L in lateral ditch,2.46mg/L and 0.70mg/L in branch ditch,1.92mg/L and 0.63mg/L in main ditch,respectively.In August and September,the nutrient contents in the water were relatively lower.The peak value of nutrient in ditch water had been moving from the field ditch to the main ditch over time,showing a remarkable impact of ditch system on river water environment.The nutrient transfer in ditch sediments could only be found in rainfall season.Nutrient contents in ditch sediment had effect on that in ditch water,but nutrients in ditch water and sediments had different origination.Ditch management in terms of the key fac-tors is hence very important for protecting river water environment.
基金Under the auspices of the National Natural Science Foundation of China (No. 40233037)
文摘Using NCEP/NCAR reanalysis data and monthly precipitation over 160 conventional stations in China, analyses of moisture transport characteristics and corresponding precipitation variation in the east part of China in summer are made, and studies are carried out on possible influence on moisture transport and precipitation in summer by the variation of Antarctic Oscillation (AAO). The results show that the abnormal variation of the AAO affected the summer precipitation in China significantly. The variation of AAO can cause the variation of intension and location of Northwestern Pacific High, which in turn cause the variation of summer monsoon rainfall in the eastern China.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41721004 and 41320104007)
文摘It is well known that suppressed convection in the tropical western North Pacific(WNP) induces an anticyclonic anomaly,and this anticyclonic anomaly results in more rainfall along the East Asian rain band through more water vapor transport during summer, as well as early and middle summer. However, the present results indicate that during late summer(from mid-August to the beginning of September), the anomalous anticyclone leads to more rainfall over central southern China(CSC), a region quite different from preceding periods. The uniqueness of late summer is found to be related to the dramatic change in climatological monsoon flows: southerlies over southern China during early and middle summer but easterlies during late summer. Therefore, the anomalous anticyclone, which shows a southerly anomaly over southern China, enhances monsoonal southerlies and induces more rainfall along the rain band during early and middle summer. During late summer,however, the anomalous anticyclone reflects a complicated change in monsoon flows: it changes the path, rather than the intensity, of monsoon flows. Specifically, during late summers of suppressed convection in the tropical WNP, southerlies dominate from the South China Sea to southern China, and during late summers of enhanced convection, northeasterlies dominate from the East China Sea to southern China, causing more and less rainfall in CSC, respectively.
基金financially supported by the National HighTech R&D Program(863 Program)of China(2012AA 092303)the Project of Shanghai Science and Technology Innovation(12231203900)+3 种基金the Industrialization Program of National Development and Reform Commission(2159999)the National Key Technologies R&D Program of China(2013BAD13B00)the Shanghai Universities First-Class Disciplines Project(Fisheries A)the Funding Program for Outstanding Dissertations in Shanghai Ocean University
文摘The neon flying squid, Ommastrephes bartramii, is a species of economically important cephalopod in the Northwest Pacific Ocean. Its short lifespan increases the susceptibility of the distribution and abundance to the direct impact of the environmental conditions. Based on the generalized linear model(GLM) and generalized additive model(GAM), the commercial fishery data from the Chinese squid-jigging fleets during 1995 to 2011 were used to examine the interannual and seasonal variability in the abundance of O. bartramii, and to evaluate the influences of variables on the abundance(catch per unit effort, CPUE). The results from GLM suggested that year, month, latitude, sea surface temperature(SST), mixed layer depth(MLD), and the interaction term(SST×MLD) were significant factors. The optimal model based on GAM included all the six significant variables and could explain 42.43% of the variance in nominal CPUE. The importance of the six variables was ranked by decreasing magnitude: year, month, latitude, SST, MLD and SST×MLD. The squid was mainly distributed in the waters between 40?N and 44?N in the Northwest Pacific Ocean. The optimal ranges of SST and MLD were from 14 to 20℃ and from 10 to 30 m, respectively. The squid abundance greatly fluctuated from 1995 to 2011. The CPUE was low during 1995–2002 and high during 2003–2008. Furthermore, the squid abundance was typically high in August. The interannual and seasonal variabilities in the squid abundance were associated with the variations of marine environmental conditions and the life history characteristics of squid.
基金Supported by the Key Program of the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX1-YW-12-04)the National Basic Research Program (973 Program) (No.2006CB403601)
文摘The seasonal generation and evolution of eddies in the region of the North Pacific Subtropical Countercurrent remain poorly understood due to the scarcity of available data.We used TOPEX/POSEIDON altimetry data from 1992 to 2007 to study the eddy field in this zone.We found that velocity shear between this region and the neighboring North Equatorial Current contributes greatly to the eddy generation.Furthermore,the eddy kinetic energy level(EKE) shows an annual cycle,maximum in April/May and minimum in December/January.Analyses of the temporal and spatial distributions of the eddy field revealed clearly that the velocity shear closely related to baroclinic instability processes.The eddy field seems to be more zonal than meridional,and the energy containing length scale shows a surprising lag of 2-3 months in comparison with the 1-D and 2-D EKE level.A similar phenomenon is observed in individual eddies in this zone.The results show that in this eddy field band,the velocity shear may drive the EKE level change so that the eddy field takes another 2-3 months to grow and interact to reach a relatively stable state.This explains the seasonal evolution of identifiable eddies.
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB417401)the CAS Strategic Priority Research Program(No.XDA10010104)
文摘Zonal heat advection (ZHA) plays an important role in the variability of the thermal structure in the tropical Pacific Ocean, especially in the western Pacific warm pool (WPWP). Using the Simple Ocean Data Assimilation (SODA) Version 2.02/4 for the period 1958-2007, this paper presents a detailed analysis of the climatological and seasonal ZHA in the tropical Pacific Ocean. Climatologically, ZHA shows a zonal- band spatial pattern associated with equatorial currents and contributes to forming the irregular eastern boundary of the WPWP (EBWP). Seasonal variation of ZHA with a positive peak from February to July is most prominent in the Nifio3.4 region, where the EBWP is located. The physical mechanism of the seasonal cycle in this region is examined. The mean advection of anomalous temperature, anomalous advection of mean temperature and eddy advection account for 31%, 51%, and 18% of the total seasonal variations, respectively. This suggests that seasonal changes of the South Equatorial Current induced by variability of the trade winds are the dominant contributor to the anomalous advection of mean temperature and hence, the seasonality of ZHA. Heat budget analysis shows that ZHA and surface heat flux make comparable contributions to the seasonal heat variation in the Nifio3.4 region, and that ZHA cools the upper ocean throughout the calendar year except in late boreal spring. The connection between ZHA and EBWP is further explored and a statistical relationship between EBWP, ZHA and surface heat flux is established based on least squares fitting.
基金supported by the National Natural Science Foundation of China[grant number 41320104007]
文摘It is well known that precipitation anomalies in the tropical western North Pacific (WNP) significantly affect circulation and rainfall in East Asia during summer. In this study, the authors further investigated this relationship, by examining the anomalies associated with positive and negative precipitation anomalies in the tropical WNP. The results suggest these anomalies are asymmetric between the enhanced and suppressed WNP rainfall. Positive precipitation anomalies over the WNP, in comparison with their negative counterparts, are more closely related to the meridional teleconnection pattern and rainfall anomalies along the East Asian rain belt. The implications of the results are discussed.
基金supported by the National Natural Science Foundation of China grant number 41776031the National Key Research and Development Program of China grant number 2018YFC1506903+2 种基金the Guangdong Natural Science Foundation grant number 2015A030313796the program for scientific research start-up funds of Guangdong Ocean Universitythe Foundation for Returned Scholars of the Ministry of Education of China。
文摘The intensity of interannual variability(IIV)of the monsoon and monsoon–ENSO biennial relationship(MEBR)were examined and compared for both the Indian summer monsoon(ISM)and western North Pacific summer monsoon(WNPSM)during 1958–2018.Covariability of the IIV and MEBR were identified for the two monsoons.When the MEBR was strong(weak),the IIV of the monsoon was observed to be large(small).This rule applied to both the ISM and WNPSM.Out-ofphase relationships were found between the ISM and the WNPSM.When the IIV and MEBR of the ISM were strong(weak),those of the WNPSM tended to be weak(strong).During the period with a stronger(weaker)ENSO–Atlantic coupling after(before)the mid-1980 s,the IIV and MEBR of the WNPSM(ISM)were observed to be stronger.The increasing influences from the tropical Atlantic sea surface temperature(SST)may trigger the observed seesaw pattern of the ISM and WNPSM in terms of the IIV and MEBR multidecadal variability.The results imply that tropical Atlantic SST may need to be given more attention and consideration when predicting future monsoon variability of the ISM and WNPSM.
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB417400)the National Natural Science Foundation of China(Nos.41421005,U1406401)
文摘Annual Rossby wave is a key component of the ENSO phenomenon in the equatorial Pacific Ocean. Due to the paucity and seasonal bias in historical hydrographic data,previous studies on equatorial Rossby waves only gave qualitative description. The accumulation of Argo measurements in recent years has greatly alleviated the data problem. In this study,seasonal variation of the equatorial Pacific Ocean is examined with annual harmonic analysis of Argo gridded data. Results show that strong seasonal signal is present in the western equatorial Pacific and explains more than 50% of the thermal variance below 500 m. Lag-correlation tracing further shows that this sub-thermocline seasonal signal originates from the eastern equatorial Pacific via downward and southwestward propagation of annual Rossby waves. Possible mechanisms for the equatorward shift of Rossby wave path are also discussed.
基金supported by the National Basic Research Program of China(Grant No.2010CB951901)the National Natural Science Foundation of China(Grant No.40821092)
文摘Based on the pentad mean ridgeline index of the western Pacific subtropical high (WPSH), the authors identified the two northward jumps of the WPSH from 1979 to 2008 and revealed their associations with the tropical SST anomalies. The authors show that the northward jumps, especially the second jump, exhibited remarkable interannual variability. In addition, the authors find that the two northward jumps were mutually independent and were influenced by the SST anomalies in the different regions of the tropical Pacific. The first jump was positively correlated with the SST anomalies in the tropical central Pacific from the preceding winter to June. In contrast, the second jump was positively related to ENSO in the preceding winter, but this correlation tended to weaken with the decay of ENSO and disappeared in July. Instead, a positive correlation was found in the Indian Ocean. We therefore suggest that ENSO plays an indirect role in the second jump through the capacitor effect of the Indian Ocean.
基金jointly supported by the National Natural Science Foundation of China grant number 41875132The National Key Research and Development Program of China grant number 2018YFA0606003。
文摘A new regional coupled ocean–atmosphere model,WRF4-LICOM,was used to investigate the impacts of regional air–sea coupling on the simulation of the western North Pacific summer monsoon(WNPSM),with a focus on the normal WNPSM year 2005.Compared to WRF4,WRF4-LICOM improved the simulation of the summer mean monsoon rainfall,circulations,sea surface net heat fluxes,and propagations of the daily rainband over the WNP.The major differences between the models were found over the northern South China Sea and east of the Philippines.The warmer SST reduced the gross moist stability of the atmosphere and increased the upward latent heat flux,and then drove local ascending anomalies,which led to the increase of rainfall in WRF4-LICOM.The resultant enhanced atmospheric heating drove a low-level anomalous cyclone to its northwest,which reduced the simulated circulation biases in the stand-alone WRF4 model.The local observed daily SST over the WNP was a response to the overlying summer monsoon.In the WRF4 model,the modeled atmosphere exhibited passive response to the underlying daily SST anomalies.With the inclusion of regional air–sea coupling,the simulated daily SST–rainfall relationship was significantly improved.WRF4-LICOM is recommended for future dynamical downscaling of simulations and projections over this region.
文摘Expecting that agricultural yield is highly dependent on climatic conditions, particularly water availability and suitable temperature, an agroclimatic study was carried out on rice crops during three different seasons in four regions of Bangladesh. Data on climate (surface air temperature and precipitation) and seasonal rice production were examined for the period 1986-2006 from 18 rice growth observatories. The relationship between climate and rice production was statistically analyzed by removing long-term trends so that the effects of improved irrigation, which results in a general increase in crop production, may be removed. The analysis involved both single and multiple regressions. The results suggested that, during monsoon and summer, higher temperatures had negative effects on rice production, especially in the northwestern (NW) region. In winter, positive effects were observed throughout Bangladesh. Since the annual mean temperature was positively correlated with those in the three seasons individually, the annual temperature had negative effects on the annual rice production only in the NW region, while it had positive effects in the central and southern regions. With the exception of the NW region, it was basically dry, excessive rainfall both in summer and monsoon yielded floods and reduced rice yield. In winter, more rainfall showed positive effects on crop production only in the central region, which was least irrigated. These findings suggested that accelerated atmospheric warming would result in serious damage to crops during summer and monsoon. Reliable prediction of future crop production will rely on the temperature and rainfall trends in individual seasons.
基金Natural Science Foundation of China(40331010)Study Project of Jiangsu Key Laboratoryof Meteorological Disaster (KLME050304)
文摘Based on an observational analysis, seven numerical experiments are designed to study the impacts of Pacific SSTA on summer precipitation over eastern China and relevant physical mechanism by NCAR CCM3. The numerical simulation results show that preceding winter SSTA in the Kuroshio region leads to summer precipitation anomaly over the Yangtze River valleys by modifying atmospheric general circulation over eastern Asia and middle-high latitude. West Pacific subtropical high is notably affected by preceding spring SSTA over the middle and east of Equator Pacific; SSTA of the central region of middle latitude in the corresponding period causes the summer rainfall anomaly over eastern China so as to trigger the atmospheric Eurasia-Pacific teleconnection pattern.