针对输电线弧垂弯曲的结构特点,根据坐标变换,结合Agrawal场线耦合模型和时域有限差分(Finite Difference Time Domain,FDTD)方法,提出了一种高效的时域混合算法,实现任意方位弯曲型输电线电磁耦合的快速计算。根据平抛物线方程,推导了...针对输电线弧垂弯曲的结构特点,根据坐标变换,结合Agrawal场线耦合模型和时域有限差分(Finite Difference Time Domain,FDTD)方法,提出了一种高效的时域混合算法,实现任意方位弯曲型输电线电磁耦合的快速计算。根据平抛物线方程,推导了空间任意分布的弯曲型输电线沿线各点的位置坐标。使用Agrawal模型的传输线方程,构建空间电磁场作用弯曲输电线的电磁耦合模型。应用FDTD的中心差分格式对传输线方程进行差分离散,迭代求解得出输电线沿线各点的瞬态电压和电流响应。通过对电磁脉冲作用地面上单根和多根弯曲输电线的电磁耦合进行数值模拟,将时域混合算法的模拟结果与矩量法(Method of Moment,MOM)相比较,验证了该算法的正确性和高效性。展开更多
A new algorithm for the stabilization or (possibly turbulent, chaotic) distributed systems,governed by linear or non linear systems of equations is presented.The SPA (Stabilization Parallel Algorithm) is based on a sy...A new algorithm for the stabilization or (possibly turbulent, chaotic) distributed systems,governed by linear or non linear systems of equations is presented.The SPA (Stabilization Parallel Algorithm) is based on a systematic parallel decompositionof the problem (related to arbitrarily overlapping decomposition of domains) and on a penaltyargument.SPA is presented here for the case of linear parabolic equations, with distributed or boundarycontrol. It extends to practically all linear and non linear evolution equations, as it will bepresented in several other publications.展开更多
文摘针对输电线弧垂弯曲的结构特点,根据坐标变换,结合Agrawal场线耦合模型和时域有限差分(Finite Difference Time Domain,FDTD)方法,提出了一种高效的时域混合算法,实现任意方位弯曲型输电线电磁耦合的快速计算。根据平抛物线方程,推导了空间任意分布的弯曲型输电线沿线各点的位置坐标。使用Agrawal模型的传输线方程,构建空间电磁场作用弯曲输电线的电磁耦合模型。应用FDTD的中心差分格式对传输线方程进行差分离散,迭代求解得出输电线沿线各点的瞬态电压和电流响应。通过对电磁脉冲作用地面上单根和多根弯曲输电线的电磁耦合进行数值模拟,将时域混合算法的模拟结果与矩量法(Method of Moment,MOM)相比较,验证了该算法的正确性和高效性。
文摘A new algorithm for the stabilization or (possibly turbulent, chaotic) distributed systems,governed by linear or non linear systems of equations is presented.The SPA (Stabilization Parallel Algorithm) is based on a systematic parallel decompositionof the problem (related to arbitrarily overlapping decomposition of domains) and on a penaltyargument.SPA is presented here for the case of linear parabolic equations, with distributed or boundarycontrol. It extends to practically all linear and non linear evolution equations, as it will bepresented in several other publications.