Based on the surface-gate and buried-gate structures,a novel buried-gate structure called the planar type buried-gate (PTBG) structure for static induction devices (SIDs) is proposed.An approach to realize a buried-ga...Based on the surface-gate and buried-gate structures,a novel buried-gate structure called the planar type buried-gate (PTBG) structure for static induction devices (SIDs) is proposed.An approach to realize a buried-gate type static induction transistor by conventional planar process technology is presented.Using this structure,it is successfully avoided the second epitaxy with a high degree of difficulty and the complicated mesa process in conventional buried gate.The experimental results demonstrate that this structure is desirable for application in power SIDs.Its advantages are high breakdown voltage and blocking gain.展开更多
By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length a...By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length are fabricated in China for the first time. The key technologies adopted to restrain SCE and to improve drive ability include a 1.7nm N/O stack gate dielectric, non-CMP planarization technology, a T-type refractory W/TiN metal stack gate electrode, and a novel super steep retrograde channel doping using heavy ion implantation and a double sidewall scheme. Using these optimized key technologies, high performance 95nm metal gate CMOS devices with excellent SCE and good driving ability are fabricated. Under power supply voltages of VDS ± 1.5V and VGS± 1.8V,drive currents of 679μA/μm for nMOS and - 327μA/μm for pMOS are obtained. A subthreshold slope of 84.46mV/dec, DIBL of 34.76mV/V, and Vth of 0.26V for nMOS, and a subthreshold slope of 107.4mV/dec,DIBL of 54.46mV/V, and Vth of 0.27V for pMOS are achieved. These results show that the combined technology has indeed thoroughly eliminated the boron penetration phenomenon and polysilicon depletion effect ,effectively reduced gate tunneling leakage, and improved device reliability.展开更多
A Smith-Purcell (SP) free electron laser (FEL) ,composed of a metallic diffraction flat grating,an open cylindrical mirror cavity and a relativistic sheet electron beam with moderate energy, is presented. The char...A Smith-Purcell (SP) free electron laser (FEL) ,composed of a metallic diffraction flat grating,an open cylindrical mirror cavity and a relativistic sheet electron beam with moderate energy, is presented. The characteristics of this device are studied by theoretical analysis,experimental measurements and particle-in-cell (PIO) simulation method. Results indicate that the coherent radiation with an output peak power up to 50 MW at millimeter wavelengths can be generated by using relativistic electron beam of moderate energy.展开更多
An induced matching M in a graph G is a matching such that V(M) induces a 1-regular subgraph of G. The induced matching number of a graph G, denoted by I M(G), is the maximum number r such that G has an induced matchi...An induced matching M in a graph G is a matching such that V(M) induces a 1-regular subgraph of G. The induced matching number of a graph G, denoted by I M(G), is the maximum number r such that G has an induced matching of r edges. Induced matching number of Pm×Pn is investigated in this paper. The main results are as follows:(1) If at least one of m and n is even, then IM(Pm×Pn=[(mn)/4].(2) If m is odd, then展开更多
In the real-world situation,the lunar missions’scale and terrain are different according to various operational regions or worksheets,which requests a more flexible and efficient algorithm to generate task paths.A mu...In the real-world situation,the lunar missions’scale and terrain are different according to various operational regions or worksheets,which requests a more flexible and efficient algorithm to generate task paths.A multi-scale ant colony planning method for the lunar robot is designed to meet the requirements of large scale and complex terrain in lunar space.In the algorithm,the actual lunar surface image is meshed into a gird map,the path planning algorithm is modeled on it,and then the actual path is projected to the original lunar surface and mission.The classical ant colony planning algorithm is rewritten utilizing a multi-scale method to address the diverse task problem.Moreover,the path smoothness is also considered to reduce the magnitude of the steering angle.Finally,several typical conditions to verify the efficiency and feasibility of the proposed algorithm are presented.展开更多
A novel nano-scale alignment technique based on Moiré signal for room-temperature imprint lithography in the submicron realm is proposed. The Moiré signals generated by a pair of quadruple gratings on two te...A novel nano-scale alignment technique based on Moiré signal for room-temperature imprint lithography in the submicron realm is proposed. The Moiré signals generated by a pair of quadruple gratings on two templates respectively are optically projected onto a photodetector array, then the detected Moiré signals are used to estimate the alignment errors in x and y directions. The experiment result indicates that complex differential Moiré signal is sensitive to relative displacement of the pair of marks than each single Moiré signal, and the alignment resolutions obtained in x and y directions are ±20nm(3σ) and ±24nm(3σ). They can meet the requirement of alignment accuracy for submicron imprint lithography.展开更多
The characteristics of special apodized fiber Bragg grating (FBG) in flat-top pass-band as reflectivity filter are presented. This special apodized FBG was designed by the particle swarm optimization algorithm. Compar...The characteristics of special apodized fiber Bragg grating (FBG) in flat-top pass-band as reflectivity filter are presented. This special apodized FBG was designed by the particle swarm optimization algorithm. Compared with conventional apodized FBG, the special apodized FBG presented was more robust in the flat-top pass-band characteristic even if the strength of grating is very week. This technology is very interesting in designing the filter for wavelength division multiplexing system.展开更多
The authors found equations for complex coordinates of spectral peaks and trajectories in the case of two superposed layers, each consisting of two orthogonal gratings. The number of geometric elements in spectra was ...The authors found equations for complex coordinates of spectral peaks and trajectories in the case of two superposed layers, each consisting of two orthogonal gratings. The number of geometric elements in spectra was found for four running parameters and different number of gratings by layers. The shape of trajectories was determined in the corresponding cases. The relationships between parameters were found which could help in reducing the intervals of parameters, in particular the relationship between the inverse aspect ratios. The numerical simulation and the physical experiment were in a good agreement with the theory. The proposed technique seems to be helpful in estimation of occurrence of moir6 patterns in visual displays which makes possible the minimization in the spectral domain without calculation of spectra.展开更多
The beam horizontal orbit at Hefei Light Source(HLS)was drifting all along while the storage ring was operating.To study this phenomenon,the displacement and the temperature variation of the BPM chamber were measured....The beam horizontal orbit at Hefei Light Source(HLS)was drifting all along while the storage ring was operating.To study this phenomenon,the displacement and the temperature variation of the BPM chamber were measured.By analyzing the measurement results,the main reason that explained the drifting phenomenon was found. The vacuum chamber following the dipole magnets was heated by the synchrotron light,which caused the increasing of the chamber surface temperature.The variation of the chamber temperature was the main reason why the BPM chamber held the horizontal displacement.To suppress the orbit drifting,a compensation method of BPM movement was proposed and its experimental results were given.展开更多
Based on control theory,adjoint system for the general problem of turbomachinery aerodynamic optimization was studied and developed in the present paper by using the variation technique in the grid node coordinates co...Based on control theory,adjoint system for the general problem of turbomachinery aerodynamic optimization was studied and developed in the present paper by using the variation technique in the grid node coordinates combined with Jacobian Matrics of flow fluxes.Then the adjoint system for aerodynamic design optimization of turbine cascade governed by compressible Navier-Stokes equations was derived in detail.With the purpose of saving computation resources,the mathematic method presented in this paper avoids the coordinate system transforming in the traditional derivation process of the adjoint system and makes the adjoint system much more sententious.Given the general expression of objective functions consisting of both boundary integral and field integral,the adjoint equations and their boundary conditions were derived,and the final expression of the objective function gradient including only boundary integrals was formulated to reduce the CPU cost,especially for the complex 3D configurations.The adjoint system was solved numerically by using the finite volume method with an explicit 5-step Runge-Kutta scheme and Riemann approximate solution of Roe's scheme combined with multi-grid technique and local time step to accelerate the convergence procedure.Finally,based on the aerodynamic optimization theory in the present work,2D and 3D inviscid and viscous inverse design programs of axial turbomachinery cascade for both pressure distribution and isentropic Mach number distribution on the blade wall were developed,and several design optimization cases were performed successfully to demonstrate the ability and economy of the present optimization system.展开更多
The present paper reports the results of an experimental investigation aimed at comparing aerodynamic perform- ance of three low-pressure turbine cascades for several Reynolds numbers under steady and unsteady inflows...The present paper reports the results of an experimental investigation aimed at comparing aerodynamic perform- ance of three low-pressure turbine cascades for several Reynolds numbers under steady and unsteady inflows. This study is focused on finding design criteria useful to reduce both profile and secondary losses in the aero-engine LP turbine for the different flight conditions. The baseline blade cascade, characterized by a standard aerodynamic loading (Zw=1.03), has been compared with two Ultra-High-Lift profiles with the same Zweifel number (Zw=1.3 for both cascades), but different velocity peak positions, leading to front and mid-loaded blade cascade configurations. The aerodynamic flow fields downstream of the cascades have been experimentally in- vestigated for Reynolds numbers in the range 70000〈Re〈300000, where lower and upper limits are typical of cruise and take-off/landing conditions, respectively. The effects induced by the incoming wakes at the reduced frequency ./+=0.62 on both profile and secondary flow losses for the three different cascade designs have been studied. Total pressure and velocity distributions have been measured by means of a miniaturized 5-hole probe in a tangential plane downstream of the cascade for both inflow conditions. The analysis of the results allows the evaluation of the aerodynamic performance of the blade cascades in terms of profile and secondary losses and the understanding of the effects of loading distribution and Zweifel number on secondary flows. When operating un- der unsteady inflow, contrarily to the steady case, the mid-loaded cascade has been found to be characterized by the lowest profile and secondary losses, making it the most attractive solution for the design of blades working in real conditions where unsteady inflow effects are present.展开更多
A fast and accurate numerical method for solving the two dimensional Reynolds aveaged Navier Stokes is applied to calculate the internal fluid of turbines and compressors. The code is based onan explicit, time-marchin...A fast and accurate numerical method for solving the two dimensional Reynolds aveaged Navier Stokes is applied to calculate the internal fluid of turbines and compressors. The code is based onan explicit, time-marching, finite volume technique. In order to accelerate convergence, local time stepping, multigrid method is employed. Four stage Runge-Kutta method is implemented to extend the stability domain. Test cases of Hobson’s impulse cascade, NASA Rotor 37 and Sanz’s supercritical compressor cascade are presented. Results of Mach number distribution on blade surfaces and Mach number contour plots indicate good agreement with experimental data. Compared with full three 3D Navier-Stokes (N-S) codes, the two dimensional code only takes a short time to obtain predicted results. This code can be used widely in practical engineering design.展开更多
Based on the two-phase wet steam flow with spontaneous condensation, experimental verification and flow analysis on nozzle and 2D cascade are carried out. The 3D Reynolds-Averaged gas-liquid two-phase flow control equ...Based on the two-phase wet steam flow with spontaneous condensation, experimental verification and flow analysis on nozzle and 2D cascade are carried out. The 3D Reynolds-Averaged gas-liquid two-phase flow control equation solver is explored with k-e-kp turbulence model. Furthermore, 3D flow numerical simulation on the last stage stator of the steam turbine is carried out. The results show that a sudden pressure rise on blade suction surface is mainly caused by the droplet growth in condensation flow. The more backward the condensation position is in cascade passage, the less the sudden pressure rise from condensation is, and the larger the nucleation rate is, the maximum under-cooling and the number of droplets per unit volume are. Interaction of condensation wave and shock wave has imposed greater influence on the parameters of the blade cascade outlet.展开更多
We analyze the effects of average index variation on the transmission characteristics of an index-apodized long-period fiber grating (LPFG) by the transfer matrix method and study how these effects depend on the gra...We analyze the effects of average index variation on the transmission characteristics of an index-apodized long-period fiber grating (LPFG) by the transfer matrix method and study how these effects depend on the grating length, the grating profile, the modal dispersion factor, and the duty cycle of the index modulation. Apart from shifting the resonance wavelength and modifying the rejection band, average index variation can give rise to significant side lobes that may appear on the short-wavelength or long-wavelength side of the rejection band, depending on the signs of the average index change and the modal dispersion factor. Our results provide general guidance for the writing of LPFGs for the minimization of side lobes. Our analysis compares well with published experimental results and should be useful for the design and fabrication of LPFGs.展开更多
文摘Based on the surface-gate and buried-gate structures,a novel buried-gate structure called the planar type buried-gate (PTBG) structure for static induction devices (SIDs) is proposed.An approach to realize a buried-gate type static induction transistor by conventional planar process technology is presented.Using this structure,it is successfully avoided the second epitaxy with a high degree of difficulty and the complicated mesa process in conventional buried gate.The experimental results demonstrate that this structure is desirable for application in power SIDs.Its advantages are high breakdown voltage and blocking gain.
文摘By complementing the equivalent oxide thickness (EOT) of a 1.7nm nitride/oxynitride (N/O) stack gate dielectric (EOT- 1.7nm) with a W/TiN metal gate electrode,metal gate CMOS devices with sub-100nm gate length are fabricated in China for the first time. The key technologies adopted to restrain SCE and to improve drive ability include a 1.7nm N/O stack gate dielectric, non-CMP planarization technology, a T-type refractory W/TiN metal stack gate electrode, and a novel super steep retrograde channel doping using heavy ion implantation and a double sidewall scheme. Using these optimized key technologies, high performance 95nm metal gate CMOS devices with excellent SCE and good driving ability are fabricated. Under power supply voltages of VDS ± 1.5V and VGS± 1.8V,drive currents of 679μA/μm for nMOS and - 327μA/μm for pMOS are obtained. A subthreshold slope of 84.46mV/dec, DIBL of 34.76mV/V, and Vth of 0.26V for nMOS, and a subthreshold slope of 107.4mV/dec,DIBL of 54.46mV/V, and Vth of 0.27V for pMOS are achieved. These results show that the combined technology has indeed thoroughly eliminated the boron penetration phenomenon and polysilicon depletion effect ,effectively reduced gate tunneling leakage, and improved device reliability.
文摘A Smith-Purcell (SP) free electron laser (FEL) ,composed of a metallic diffraction flat grating,an open cylindrical mirror cavity and a relativistic sheet electron beam with moderate energy, is presented. The characteristics of this device are studied by theoretical analysis,experimental measurements and particle-in-cell (PIO) simulation method. Results indicate that the coherent radiation with an output peak power up to 50 MW at millimeter wavelengths can be generated by using relativistic electron beam of moderate energy.
文摘An induced matching M in a graph G is a matching such that V(M) induces a 1-regular subgraph of G. The induced matching number of a graph G, denoted by I M(G), is the maximum number r such that G has an induced matching of r edges. Induced matching number of Pm×Pn is investigated in this paper. The main results are as follows:(1) If at least one of m and n is even, then IM(Pm×Pn=[(mn)/4].(2) If m is odd, then
基金supported by the National Natural Science Foundations of China(No.11772185)Fundamental Research Funds for the Central Universities(No.3072022JC0202)。
文摘In the real-world situation,the lunar missions’scale and terrain are different according to various operational regions or worksheets,which requests a more flexible and efficient algorithm to generate task paths.A multi-scale ant colony planning method for the lunar robot is designed to meet the requirements of large scale and complex terrain in lunar space.In the algorithm,the actual lunar surface image is meshed into a gird map,the path planning algorithm is modeled on it,and then the actual path is projected to the original lunar surface and mission.The classical ant colony planning algorithm is rewritten utilizing a multi-scale method to address the diverse task problem.Moreover,the path smoothness is also considered to reduce the magnitude of the steering angle.Finally,several typical conditions to verify the efficiency and feasibility of the proposed algorithm are presented.
文摘A novel nano-scale alignment technique based on Moiré signal for room-temperature imprint lithography in the submicron realm is proposed. The Moiré signals generated by a pair of quadruple gratings on two templates respectively are optically projected onto a photodetector array, then the detected Moiré signals are used to estimate the alignment errors in x and y directions. The experiment result indicates that complex differential Moiré signal is sensitive to relative displacement of the pair of marks than each single Moiré signal, and the alignment resolutions obtained in x and y directions are ±20nm(3σ) and ±24nm(3σ). They can meet the requirement of alignment accuracy for submicron imprint lithography.
文摘The characteristics of special apodized fiber Bragg grating (FBG) in flat-top pass-band as reflectivity filter are presented. This special apodized FBG was designed by the particle swarm optimization algorithm. Compared with conventional apodized FBG, the special apodized FBG presented was more robust in the flat-top pass-band characteristic even if the strength of grating is very week. This technology is very interesting in designing the filter for wavelength division multiplexing system.
文摘The authors found equations for complex coordinates of spectral peaks and trajectories in the case of two superposed layers, each consisting of two orthogonal gratings. The number of geometric elements in spectra was found for four running parameters and different number of gratings by layers. The shape of trajectories was determined in the corresponding cases. The relationships between parameters were found which could help in reducing the intervals of parameters, in particular the relationship between the inverse aspect ratios. The numerical simulation and the physical experiment were in a good agreement with the theory. The proposed technique seems to be helpful in estimation of occurrence of moir6 patterns in visual displays which makes possible the minimization in the spectral domain without calculation of spectra.
文摘The beam horizontal orbit at Hefei Light Source(HLS)was drifting all along while the storage ring was operating.To study this phenomenon,the displacement and the temperature variation of the BPM chamber were measured.By analyzing the measurement results,the main reason that explained the drifting phenomenon was found. The vacuum chamber following the dipole magnets was heated by the synchrotron light,which caused the increasing of the chamber surface temperature.The variation of the chamber temperature was the main reason why the BPM chamber held the horizontal displacement.To suppress the orbit drifting,a compensation method of BPM movement was proposed and its experimental results were given.
基金supported by the National Natural Science Foundation of China (Grant No. 50776065)
文摘Based on control theory,adjoint system for the general problem of turbomachinery aerodynamic optimization was studied and developed in the present paper by using the variation technique in the grid node coordinates combined with Jacobian Matrics of flow fluxes.Then the adjoint system for aerodynamic design optimization of turbine cascade governed by compressible Navier-Stokes equations was derived in detail.With the purpose of saving computation resources,the mathematic method presented in this paper avoids the coordinate system transforming in the traditional derivation process of the adjoint system and makes the adjoint system much more sententious.Given the general expression of objective functions consisting of both boundary integral and field integral,the adjoint equations and their boundary conditions were derived,and the final expression of the objective function gradient including only boundary integrals was formulated to reduce the CPU cost,especially for the complex 3D configurations.The adjoint system was solved numerically by using the finite volume method with an explicit 5-step Runge-Kutta scheme and Riemann approximate solution of Roe's scheme combined with multi-grid technique and local time step to accelerate the convergence procedure.Finally,based on the aerodynamic optimization theory in the present work,2D and 3D inviscid and viscous inverse design programs of axial turbomachinery cascade for both pressure distribution and isentropic Mach number distribution on the blade wall were developed,and several design optimization cases were performed successfully to demonstrate the ability and economy of the present optimization system.
文摘The present paper reports the results of an experimental investigation aimed at comparing aerodynamic perform- ance of three low-pressure turbine cascades for several Reynolds numbers under steady and unsteady inflows. This study is focused on finding design criteria useful to reduce both profile and secondary losses in the aero-engine LP turbine for the different flight conditions. The baseline blade cascade, characterized by a standard aerodynamic loading (Zw=1.03), has been compared with two Ultra-High-Lift profiles with the same Zweifel number (Zw=1.3 for both cascades), but different velocity peak positions, leading to front and mid-loaded blade cascade configurations. The aerodynamic flow fields downstream of the cascades have been experimentally in- vestigated for Reynolds numbers in the range 70000〈Re〈300000, where lower and upper limits are typical of cruise and take-off/landing conditions, respectively. The effects induced by the incoming wakes at the reduced frequency ./+=0.62 on both profile and secondary flow losses for the three different cascade designs have been studied. Total pressure and velocity distributions have been measured by means of a miniaturized 5-hole probe in a tangential plane downstream of the cascade for both inflow conditions. The analysis of the results allows the evaluation of the aerodynamic performance of the blade cascades in terms of profile and secondary losses and the understanding of the effects of loading distribution and Zweifel number on secondary flows. When operating un- der unsteady inflow, contrarily to the steady case, the mid-loaded cascade has been found to be characterized by the lowest profile and secondary losses, making it the most attractive solution for the design of blades working in real conditions where unsteady inflow effects are present.
文摘A fast and accurate numerical method for solving the two dimensional Reynolds aveaged Navier Stokes is applied to calculate the internal fluid of turbines and compressors. The code is based onan explicit, time-marching, finite volume technique. In order to accelerate convergence, local time stepping, multigrid method is employed. Four stage Runge-Kutta method is implemented to extend the stability domain. Test cases of Hobson’s impulse cascade, NASA Rotor 37 and Sanz’s supercritical compressor cascade are presented. Results of Mach number distribution on blade surfaces and Mach number contour plots indicate good agreement with experimental data. Compared with full three 3D Navier-Stokes (N-S) codes, the two dimensional code only takes a short time to obtain predicted results. This code can be used widely in practical engineering design.
文摘Based on the two-phase wet steam flow with spontaneous condensation, experimental verification and flow analysis on nozzle and 2D cascade are carried out. The 3D Reynolds-Averaged gas-liquid two-phase flow control equation solver is explored with k-e-kp turbulence model. Furthermore, 3D flow numerical simulation on the last stage stator of the steam turbine is carried out. The results show that a sudden pressure rise on blade suction surface is mainly caused by the droplet growth in condensation flow. The more backward the condensation position is in cascade passage, the less the sudden pressure rise from condensation is, and the larger the nucleation rate is, the maximum under-cooling and the number of droplets per unit volume are. Interaction of condensation wave and shock wave has imposed greater influence on the parameters of the blade cascade outlet.
文摘We analyze the effects of average index variation on the transmission characteristics of an index-apodized long-period fiber grating (LPFG) by the transfer matrix method and study how these effects depend on the grating length, the grating profile, the modal dispersion factor, and the duty cycle of the index modulation. Apart from shifting the resonance wavelength and modifying the rejection band, average index variation can give rise to significant side lobes that may appear on the short-wavelength or long-wavelength side of the rejection band, depending on the signs of the average index change and the modal dispersion factor. Our results provide general guidance for the writing of LPFGs for the minimization of side lobes. Our analysis compares well with published experimental results and should be useful for the design and fabrication of LPFGs.