A novel noninvasive approach, based on flow-induced vibration, to the online flow regime identification for wet gas flow in a horizontal pipeline is proposed. Research into the flow-induced vibration response for the ...A novel noninvasive approach, based on flow-induced vibration, to the online flow regime identification for wet gas flow in a horizontal pipeline is proposed. Research into the flow-induced vibration response for the wet gas flow was conducted under the conditions of pipe diameter 50 mm, pressure from 0.25 MPa to 0.35 MPa, Lockhart-Martinelli parameter from 0.02 to 0.6, and gas Froude Number from 0.5 to 2.7. The flow-induced vibration signals were measured by a transducer installed on outside wall of pipe, and then the normalized energy features from different frequency bands in the vibration signals were extracted through 4-scale wavelet package transform. A "binary tree" multi-class support vector machine(MCSVM) classifier, with the normalized feature vector as inputs, and Gaussian radial basis function as kernel function, was developed to identify the three typical flow regimes including stratified wavy flow, annular mist flow, and slug flow for wet gas flow. The results show that the method can identify effectively flow regimes and its identification accuracy is about 93.3%. Comparing with the other classifiers, the MCSVM classifier has higher accuracy, especially under the case of small samples. The noninvasive measurement approach has great application prospect in online flow regime identification.展开更多
A new non-invasive blood glucose measuring apparatus (NBGMA) made up of MSP430F149 SCM (single chip micyoco) was developed,which can measure blood glucose level (BGL) frequently,conveniently and painlessly. The hardwa...A new non-invasive blood glucose measuring apparatus (NBGMA) made up of MSP430F149 SCM (single chip micyoco) was developed,which can measure blood glucose level (BGL) frequently,conveniently and painlessly. The hardware and software of this apparatus were designed,and detecting algorithms based on conservation of energy method (COEM) were presented. According to the law of conservation of energy that the energy derived by human body equals energy consumed by metabolism,and the relationship between convection,evaporation,radiation and the BGL was established. The sensor module was designed. 20 healthy volunteers were involved in the clinical experiment. The BGL measured by an automatic biochemical analyzer (ABA) was set as the reference. Regression analysis was performed to compare the conservation of energy method with the biochemical method,using the 20 data points with blood glucose concentrations ranging from 680 to 1 100 mg/L. Reproducibility was measured for healthy fasting volunteers. The results show that the means of BGL detected by NBGMA and ANA are very close to each other,and the difference of standard deviation (SD) is 24.7 mg/L. The correlative coefficient is 0.807. The coefficient of variation (CV) is 4% at 921.6 mg/L. The resultant regression is evaluated by the Clarke error grid analysis (EGA) and all data points are included in the clinically acceptable regions (region A:100%,region B:0%). Accordingly,it is feasible to measure BGL with COEM.展开更多
A flow-based iodometric extraction method for the determination of selenium sulfide was developed and applied to cosmeceutical products. Iodine which was generated from the reduction of selenium(IV) ions by iodide i...A flow-based iodometric extraction method for the determination of selenium sulfide was developed and applied to cosmeceutical products. Iodine which was generated from the reduction of selenium(IV) ions by iodide ion was on-line extracted using a polypropylene HFM (hollow fiber membrane) liquid extraction technique. The HFM extraction unit was constructed and used to support an organic solvent (hexane) and separate between the organic phase and aqueous phase. The resulting purple extract was carried to a fiber optic spectrophotometric detector for the measurement at 521 nm. Parameters which affected the extraction efficiency, sensitivity and sample throughput such as iodide (selenium molar ratio, extraction time and washing time between the cycles) were investigated and optimized. A linear dynamic range of 80-373 mg.Lt selenium solution was obtained with an extraction time of 60 sec. The total analysis time including washing was about 180 sec which provided a sample throughput of approximately 20 samples'hr1 and excluded the sample pre-treatment. The recoveries for the determination of selenium in the forms of selenium dioxide and selenium sulfide were in the range of 103%-104% with 1%-3% RSD (relative standard deviation). The relative errors of this method which was applied for determination of selenium sulfide levels in an anti-dandruff shampoo and a cosmeceutical bead sample were both less than 2.5%.展开更多
基金Supported by the National Natural Science Foundation of China (60672003)
文摘A novel noninvasive approach, based on flow-induced vibration, to the online flow regime identification for wet gas flow in a horizontal pipeline is proposed. Research into the flow-induced vibration response for the wet gas flow was conducted under the conditions of pipe diameter 50 mm, pressure from 0.25 MPa to 0.35 MPa, Lockhart-Martinelli parameter from 0.02 to 0.6, and gas Froude Number from 0.5 to 2.7. The flow-induced vibration signals were measured by a transducer installed on outside wall of pipe, and then the normalized energy features from different frequency bands in the vibration signals were extracted through 4-scale wavelet package transform. A "binary tree" multi-class support vector machine(MCSVM) classifier, with the normalized feature vector as inputs, and Gaussian radial basis function as kernel function, was developed to identify the three typical flow regimes including stratified wavy flow, annular mist flow, and slug flow for wet gas flow. The results show that the method can identify effectively flow regimes and its identification accuracy is about 93.3%. Comparing with the other classifiers, the MCSVM classifier has higher accuracy, especially under the case of small samples. The noninvasive measurement approach has great application prospect in online flow regime identification.
基金Project(07JJ6133) supported by the Natural Science Foundation of Hunan Province, China
文摘A new non-invasive blood glucose measuring apparatus (NBGMA) made up of MSP430F149 SCM (single chip micyoco) was developed,which can measure blood glucose level (BGL) frequently,conveniently and painlessly. The hardware and software of this apparatus were designed,and detecting algorithms based on conservation of energy method (COEM) were presented. According to the law of conservation of energy that the energy derived by human body equals energy consumed by metabolism,and the relationship between convection,evaporation,radiation and the BGL was established. The sensor module was designed. 20 healthy volunteers were involved in the clinical experiment. The BGL measured by an automatic biochemical analyzer (ABA) was set as the reference. Regression analysis was performed to compare the conservation of energy method with the biochemical method,using the 20 data points with blood glucose concentrations ranging from 680 to 1 100 mg/L. Reproducibility was measured for healthy fasting volunteers. The results show that the means of BGL detected by NBGMA and ANA are very close to each other,and the difference of standard deviation (SD) is 24.7 mg/L. The correlative coefficient is 0.807. The coefficient of variation (CV) is 4% at 921.6 mg/L. The resultant regression is evaluated by the Clarke error grid analysis (EGA) and all data points are included in the clinically acceptable regions (region A:100%,region B:0%). Accordingly,it is feasible to measure BGL with COEM.
文摘A flow-based iodometric extraction method for the determination of selenium sulfide was developed and applied to cosmeceutical products. Iodine which was generated from the reduction of selenium(IV) ions by iodide ion was on-line extracted using a polypropylene HFM (hollow fiber membrane) liquid extraction technique. The HFM extraction unit was constructed and used to support an organic solvent (hexane) and separate between the organic phase and aqueous phase. The resulting purple extract was carried to a fiber optic spectrophotometric detector for the measurement at 521 nm. Parameters which affected the extraction efficiency, sensitivity and sample throughput such as iodide (selenium molar ratio, extraction time and washing time between the cycles) were investigated and optimized. A linear dynamic range of 80-373 mg.Lt selenium solution was obtained with an extraction time of 60 sec. The total analysis time including washing was about 180 sec which provided a sample throughput of approximately 20 samples'hr1 and excluded the sample pre-treatment. The recoveries for the determination of selenium in the forms of selenium dioxide and selenium sulfide were in the range of 103%-104% with 1%-3% RSD (relative standard deviation). The relative errors of this method which was applied for determination of selenium sulfide levels in an anti-dandruff shampoo and a cosmeceutical bead sample were both less than 2.5%.