One of the fundamental questions in community ecology is whether communities are random or formed by deterministic mechanisms. Although many efforts have been made to verify non-randomness in community structure, litt...One of the fundamental questions in community ecology is whether communities are random or formed by deterministic mechanisms. Although many efforts have been made to verify non-randomness in community structure, little is known with regard to co-occurrence patterns in above-ground and below-ground communities. In this paper, we used a null model to test non-randomness in the structure of the above-ground and below-ground mite communities in farmland of the Sanjiang Plain, Northeast China. Then, we used four tests for non-randomness to recognize species pairs that would be demonstrated as significantly aggregated or segregated co-occurrences of the above-ground and below-ground mite communities. The pattern of the above-ground mite commu- nity was significantly non-random in October, suggesting species segregation and hence interspecific competition. Additionally, species co-occurrence patterns did not differ from randomness in the above-ground mite community in August or in below-ground mite com- munities in August and October. Only one significant species pair was detected in the above-ground mite community in August, while no significant species pairs were recognized in the above-ground mite community in October or in the below-ground mite communities in August and October. The results indicate that non-randomness and significant species pairs may not be the general rule in the above-ground and below-ground mite communities in farmland of the Sanjiang Plain at the fine scale.展开更多
In order to investigate the transformation among the precipitation,groundwater,and surface water in the Sanjiang Plain,Northeast China,precipitation and groundwater samples which were collected at the meteorological s...In order to investigate the transformation among the precipitation,groundwater,and surface water in the Sanjiang Plain,Northeast China,precipitation and groundwater samples which were collected at the meteorological station of the Sanjiang Mire Wetland Experimental Station,Chinese Academy of Sciences and the surface water which collected from the Wolulan River were used to identify the transformation of three types of water.The isotope composition of different kinds of water sources were analyzed via stable isotope(deuterium and oxygen-18) investigation of natural water.The results show a clear seasonal difference in the stable isotopes in precipitation.During the cold half-year,the mean stable isotope in precipitation in the Sanjiang Plain reaches its minimum with the minimum temperature.The δ18O and δD values are high in the rainy season.In the Wolulan River,the evaporation is the highest in August and September.The volume of evaporation and the replenishment to the river is mostly same.The groundwater is recharged more by the direct infiltration of precipitation than by the river flow.The results of this study indicate that the water bodies in the Sanjiang Plain have close hydrologic relationships,and that the transformation among each water system frequently occurs.展开更多
The Sanjiang Plain is a vast area of alluvial floodplains and low hills in northeast Heilongjiang Province. Because of the excessive land reclamation in the past, the whole forest area and the quality have decreased. ...The Sanjiang Plain is a vast area of alluvial floodplains and low hills in northeast Heilongjiang Province. Because of the excessive land reclamation in the past, the whole forest area and the quality have decreased. In the view of sustainable development, this paper analyzed the possibilities for Non-timber Forest Product in terms of developing potentialities, markets, social effects and the status of NTFPs in several counties of Sanjiang Plain. The result showed that, active development and management for NTFPs is an optimistic option to how to balance the wetlands conservation and sustainable economic development.展开更多
In this study, a historic simulation covering the period from 1951 to 2000 and three projected scenario simulations covering 2001-2050 were conducted em- ploying the regional climate model RegCM4 to detect the changes...In this study, a historic simulation covering the period from 1951 to 2000 and three projected scenario simulations covering 2001-2050 were conducted em- ploying the regional climate model RegCM4 to detect the changes of terrestrial water storage (TWS) in major river basins of China, using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES): A1B, A2, and B1. The historic simula- tion revealed that the variations of TWS, which are dominated by precipitation in the basins, rely highly on their climatic features. Compared with the historic simu- lation, the changes of TWS in the scenario simulations showed strong regional differences. However, for all sce- narios, TWS was found to increase most in Northeast China and surrounding mountains around the Tibetan Plateau, and decrease most in eastern regions of China. Unlike the low seasonal variations of TWS in arid areas, the TWS showed strong seasonal variations in eastern monsoon areas, with the maximum changes usually oc- curring in summer, when TWS increases most in a year. Among the three scenario simulations, TWS increased most in Songhua River Basin of B1 scenario, and de- creased most in Pearl River Basin of A2 scenario and Hal River Basin of A1B scenario, accompanied by different annual trends and seasonal variations.展开更多
Based on RegCM4,a climate model system,we simulated the distribution of the present climate(1961-1990)and the future climate(2010-2099),under emission scenarios of RCPs over the whole Pearl River Basin.From the climat...Based on RegCM4,a climate model system,we simulated the distribution of the present climate(1961-1990)and the future climate(2010-2099),under emission scenarios of RCPs over the whole Pearl River Basin.From the climate parameters,a set of mean precipitation,wet day frequency,and mean wet day intensity and several precipitation percentiles are used to assess the expected changes in daily precipitation characteristics for the 21 st century.Meanwhile the return values of precipitation intensity with an average return of 5,10,20,and 50 years are also used to assess the expected changes in precipitation extremes events in this study.The structure of the change across the precipitation distribution is very coherent between RCP4.5 and RCP8.5.The annual,spring and winter average precipitation decreases while the summer and autumn average precipitation increases.The basic diagnostics of precipitation show that the frequency of precipitation is projected to decrease but the intensity is projected to increase.The wet day percentiles(q90 and q95) also increase,indicating that precipitation extremes intensity will increase in the future.Meanwhile,the5-year return value tends to increase by 30%-45%in the basins of Liujiang River,Red Water River,Guihe River and Pearl River Delta region,where the 5-year return value of future climate corresponds to the 8-to 10-year return value of the present climate,and the 50-year return value corresponds to the 100-year return value of the present climate over the Pearl River Delta region in the 2080 s under RCP8.5,which indicates that the warming environment will give rise to changes in the intensity and frequency of extreme precipitation events.展开更多
Over the past five decades, the natural wetlands in Sanjiang Plain, Northeast China, have been extensively reclaimed for agriculture with a total loss of nearly 80% of the surface area and the undrained marshes have r...Over the past five decades, the natural wetlands in Sanjiang Plain, Northeast China, have been extensively reclaimed for agriculture with a total loss of nearly 80% of the surface area and the undrained marshes have received a large amount of exogenous nitrogen (N) input from the adjacent agricultural land because of fertilization. In the present study, the effects of nitrogen additions on seed germination and seedling biomass of Calamagrostis angustifolia in freshwater marsh were tested in a greenhouse study. Seed bank soil was exposed to different N additions (0, 5, 10, 20 and 40 g/m^2) under non-flooded water regime. Results revealed that, low level of N additions (less than 10 g/m^2) did not significantly affect the species richness and seedling density, while the seedling biomass at 5 g/m^2 of N addition was higher than other nutrient conditions. But species richness, seedling emergence and biomass decreased significantly at high level of N additions (20-40 g/m^2). The responses were species-specific. High level of N additions had negative impacts on seed germination, seedling growth and biomass of dominant species Eleocharis ovata, Calamagrostis angustifolia, duncus effusus in the seed bank. To protect and restore the wetland vegetation community in the Sanjiang plain, fertilization, irrigation and land management strategies will need to be implemented to reduce the nutrient input from the agricultural land to the wetlands.展开更多
基金Under the auspices of National Natural Science Foundation of China(No.41101049,40601047,41371072,31101617,41171047)China Postdoctoral Science Foundation(No.2012M511361)+2 种基金Excellent Youth Scholars of Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences(No.DLSYQ2012004)Fund for Distinguished Young Scholar of Harbin Normal University(No.KGB201204)Scientific Innovation Project for Doctoral Candidate of Harbin Normal University(No.HSDBSCX2012-07)
文摘One of the fundamental questions in community ecology is whether communities are random or formed by deterministic mechanisms. Although many efforts have been made to verify non-randomness in community structure, little is known with regard to co-occurrence patterns in above-ground and below-ground communities. In this paper, we used a null model to test non-randomness in the structure of the above-ground and below-ground mite communities in farmland of the Sanjiang Plain, Northeast China. Then, we used four tests for non-randomness to recognize species pairs that would be demonstrated as significantly aggregated or segregated co-occurrences of the above-ground and below-ground mite communities. The pattern of the above-ground mite commu- nity was significantly non-random in October, suggesting species segregation and hence interspecific competition. Additionally, species co-occurrence patterns did not differ from randomness in the above-ground mite community in August or in below-ground mite com- munities in August and October. Only one significant species pair was detected in the above-ground mite community in August, while no significant species pairs were recognized in the above-ground mite community in October or in the below-ground mite communities in August and October. The results indicate that non-randomness and significant species pairs may not be the general rule in the above-ground and below-ground mite communities in farmland of the Sanjiang Plain at the fine scale.
基金Under the auspices of Major Science and Technology Program for Water Pollution Control and Treatment(No.2012ZX07201004)National Natural Science Foundation of China(No.41101470)
文摘In order to investigate the transformation among the precipitation,groundwater,and surface water in the Sanjiang Plain,Northeast China,precipitation and groundwater samples which were collected at the meteorological station of the Sanjiang Mire Wetland Experimental Station,Chinese Academy of Sciences and the surface water which collected from the Wolulan River were used to identify the transformation of three types of water.The isotope composition of different kinds of water sources were analyzed via stable isotope(deuterium and oxygen-18) investigation of natural water.The results show a clear seasonal difference in the stable isotopes in precipitation.During the cold half-year,the mean stable isotope in precipitation in the Sanjiang Plain reaches its minimum with the minimum temperature.The δ18O and δD values are high in the rainy season.In the Wolulan River,the evaporation is the highest in August and September.The volume of evaporation and the replenishment to the river is mostly same.The groundwater is recharged more by the direct infiltration of precipitation than by the river flow.The results of this study indicate that the water bodies in the Sanjiang Plain have close hydrologic relationships,and that the transformation among each water system frequently occurs.
文摘The Sanjiang Plain is a vast area of alluvial floodplains and low hills in northeast Heilongjiang Province. Because of the excessive land reclamation in the past, the whole forest area and the quality have decreased. In the view of sustainable development, this paper analyzed the possibilities for Non-timber Forest Product in terms of developing potentialities, markets, social effects and the status of NTFPs in several counties of Sanjiang Plain. The result showed that, active development and management for NTFPs is an optimistic option to how to balance the wetlands conservation and sustainable economic development.
基金supported by the National Basic Research Program of China(Grants 2010CB428403 and 2009CB421407)the National Natural Science Foundation of China(Grants 41075062 and 91125016)
文摘In this study, a historic simulation covering the period from 1951 to 2000 and three projected scenario simulations covering 2001-2050 were conducted em- ploying the regional climate model RegCM4 to detect the changes of terrestrial water storage (TWS) in major river basins of China, using the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES): A1B, A2, and B1. The historic simula- tion revealed that the variations of TWS, which are dominated by precipitation in the basins, rely highly on their climatic features. Compared with the historic simu- lation, the changes of TWS in the scenario simulations showed strong regional differences. However, for all sce- narios, TWS was found to increase most in Northeast China and surrounding mountains around the Tibetan Plateau, and decrease most in eastern regions of China. Unlike the low seasonal variations of TWS in arid areas, the TWS showed strong seasonal variations in eastern monsoon areas, with the maximum changes usually oc- curring in summer, when TWS increases most in a year. Among the three scenario simulations, TWS increased most in Songhua River Basin of B1 scenario, and de- creased most in Pearl River Basin of A2 scenario and Hal River Basin of A1B scenario, accompanied by different annual trends and seasonal variations.
基金Specialized Research Project for Public Welfare Industries(Meteorology)from the Ministry of Science and Technology(GYHY201406025)Specialized Project for Climate Change from China Meteorological Administration(CCSF201404,CCSF2011-25,CCSF201211CCSF 2011-25)+2 种基金Specialized Foundation for Low Carbon Development in Guangdong Province(2012-019)Foundation of Science Innovation Teams for Guangdong Meteorological Bureau(201102)Science and Technology Planning Project for Guangdong Province(2012A061400012)
文摘Based on RegCM4,a climate model system,we simulated the distribution of the present climate(1961-1990)and the future climate(2010-2099),under emission scenarios of RCPs over the whole Pearl River Basin.From the climate parameters,a set of mean precipitation,wet day frequency,and mean wet day intensity and several precipitation percentiles are used to assess the expected changes in daily precipitation characteristics for the 21 st century.Meanwhile the return values of precipitation intensity with an average return of 5,10,20,and 50 years are also used to assess the expected changes in precipitation extremes events in this study.The structure of the change across the precipitation distribution is very coherent between RCP4.5 and RCP8.5.The annual,spring and winter average precipitation decreases while the summer and autumn average precipitation increases.The basic diagnostics of precipitation show that the frequency of precipitation is projected to decrease but the intensity is projected to increase.The wet day percentiles(q90 and q95) also increase,indicating that precipitation extremes intensity will increase in the future.Meanwhile,the5-year return value tends to increase by 30%-45%in the basins of Liujiang River,Red Water River,Guihe River and Pearl River Delta region,where the 5-year return value of future climate corresponds to the 8-to 10-year return value of the present climate,and the 50-year return value corresponds to the 100-year return value of the present climate over the Pearl River Delta region in the 2080 s under RCP8.5,which indicates that the warming environment will give rise to changes in the intensity and frequency of extreme precipitation events.
文摘Over the past five decades, the natural wetlands in Sanjiang Plain, Northeast China, have been extensively reclaimed for agriculture with a total loss of nearly 80% of the surface area and the undrained marshes have received a large amount of exogenous nitrogen (N) input from the adjacent agricultural land because of fertilization. In the present study, the effects of nitrogen additions on seed germination and seedling biomass of Calamagrostis angustifolia in freshwater marsh were tested in a greenhouse study. Seed bank soil was exposed to different N additions (0, 5, 10, 20 and 40 g/m^2) under non-flooded water regime. Results revealed that, low level of N additions (less than 10 g/m^2) did not significantly affect the species richness and seedling density, while the seedling biomass at 5 g/m^2 of N addition was higher than other nutrient conditions. But species richness, seedling emergence and biomass decreased significantly at high level of N additions (20-40 g/m^2). The responses were species-specific. High level of N additions had negative impacts on seed germination, seedling growth and biomass of dominant species Eleocharis ovata, Calamagrostis angustifolia, duncus effusus in the seed bank. To protect and restore the wetland vegetation community in the Sanjiang plain, fertilization, irrigation and land management strategies will need to be implemented to reduce the nutrient input from the agricultural land to the wetlands.