基于2005年NCEP/GFS分析资料和拉格朗日粒子扩散模式的"Domain Filling"技术,以气块穿越对流层顶后的滞留时间为标准,诊断分析了夏季亚洲季风区对流层-平流层质量交换,重点讨论了对平流层大气成分收支具有实际意义的不可逆双...基于2005年NCEP/GFS分析资料和拉格朗日粒子扩散模式的"Domain Filling"技术,以气块穿越对流层顶后的滞留时间为标准,诊断分析了夏季亚洲季风区对流层-平流层质量交换,重点讨论了对平流层大气成分收支具有实际意义的不可逆双向质量交换过程,并利用前向(后向)轨迹追踪方法,分析了其4天的"源(汇)"特征.研究结果表明:(1)对流层-平流层质量交换(Troposphere-Stratosphere mass Exchange,STE)的计算对滞留时间阈值的选择具有较强敏感性,大多数的气块在1~2天内可频繁地往返对流层顶.这些瞬时交换事件的考虑与否对穿越对流层顶的质量交换计算的准确性具有重要影响,尤其在中纬度的风暴轴区域.(2)从亚洲季风区对流层-平流层质量净交换纬向平均上看,45°N以南的区域为对流层向平流层的质量输送(Troposphere to Stratosphere massTransport,TST),副热带地区为最强的上升支,而在45°N~55°N的中纬度地区是平流层向对流层质量输送(Stratosphere to Troposphere mass Transport,STT).地理分布上,STT主要分布在青藏高原以北的东亚地区,与亚洲季风区夏季大尺度的槽区相对应.夏季整个亚洲季风区都是TST发生的区域,最大值位于青藏高原东南侧及其附近区域,该区域占亚洲季风区不可逆TST夏季平均总量的46%.(3)对流层-平流层质量交换的"源汇"特征分析表明,STT主要源于100°E以西、50°N以北的高纬地区,向下可以输送到中国东北部及朝鲜半岛北部等中纬度区域.而TST主要来源于中纬度和副热带地区的大气输送,向上穿越对流层顶高度以后,可分别向高纬的极地和热带地区输送,这意味着亚洲季风区夏季的TST水汽输送可能进入"热带管"中,进而可能对全球平流层水汽平衡产生重要影响.展开更多
用1958年到2001年44 a ECMWF资料,P坐标系下Wei公式诊断了全球对流层、平流层交换的季节变化.结果表明:印尼、孟加拉湾以及南美中西海岸附近是物质由对流层向平流层输送的主要通道.中高纬度地区同时存在向上、向下的通量,大尺度槽区伴...用1958年到2001年44 a ECMWF资料,P坐标系下Wei公式诊断了全球对流层、平流层交换的季节变化.结果表明:印尼、孟加拉湾以及南美中西海岸附近是物质由对流层向平流层输送的主要通道.中高纬度地区同时存在向上、向下的通量,大尺度槽区伴随着平流层向下的输送.一年中,秋、冬季向下的输送强,春、夏季较弱.东亚地区存在很强的平流层向下的输送,且中心位置移动不大;只占北半球5.6%面积的东亚,其多年平均质量净交换量却占到北半球的15.83%,这说明东亚地区对流层与平流层之间的质量交换对北半球乃至全球对流层、平流层交换研究的重要性.从1958年到2001年,穿越对流层顶的空气都是更多地从平流层进入对流层,这与同化数据本身存在系统性偏差以及对流层顶高度44a来始终升高有关.南、北半球质量交换量以及质量交换通量对所占纬度带的贡献都是从赤道向两极逐渐增大,且北半球的贡献比南半球要大得多.高纬度地区单位面积上的质量交换量以及质量交换通量比低纬度要大,说明高纬度地区质量交换的效率要比低纬度更高.展开更多
利用MERRA再分析资料,选取2007年江淮梅雨作为研究个例,通过对上对流层、下平流层(UTLS)区域3种化学示踪物(臭氧、一氧化碳和水汽)及位涡的水平与垂直分布变化的分析,探讨梅雨发生前后梅雨区上空的平流层—对流层物质交换(STE)特征。研...利用MERRA再分析资料,选取2007年江淮梅雨作为研究个例,通过对上对流层、下平流层(UTLS)区域3种化学示踪物(臭氧、一氧化碳和水汽)及位涡的水平与垂直分布变化的分析,探讨梅雨发生前后梅雨区上空的平流层—对流层物质交换(STE)特征。研究表明,梅雨期存在由对流层顶折卷造成的跨越对流层顶向下的物质传输和对流活动引起的物质向上传输。入梅前,主要是由对流层顶折卷造成的物质向下传输(至少能达到300 h Pa),这一过程导致对流层中上层存在高浓度臭氧及一个干层;随后,伴随梅雨的发生,对流活动频繁出现,对流层顶开始抬升,在入梅第二天已经恢复到对流层顶折卷过程发生之前的高度,对流层内的高浓度臭氧和干层也随对流层顶折卷的东移而移出梅雨区。还通过分析梅雨区臭氧和整个亚洲夏季风区臭氧的相对变化量发现,整个梅雨期的STE为物质的向下传输,在UTLS区,梅雨区对亚洲夏季风区的STE贡献为跨越对流层顶向下传输。展开更多
利用1958-2001年的臭氧混合比和ECMWF(Europema Centre for Medium-range Weather Forecast)资料,采用Wei诊断模型定量计算了穿越全球对流层顶的臭氧质量通量.结果表明:(1)臭氧通量场存在纬向型和经向型的空间波列结构,这些空...利用1958-2001年的臭氧混合比和ECMWF(Europema Centre for Medium-range Weather Forecast)资料,采用Wei诊断模型定量计算了穿越全球对流层顶的臭氧质量通量.结果表明:(1)臭氧通量场存在纬向型和经向型的空间波列结构,这些空间波列均未能跨越对流层顶断裂带到达热带对流层顶控制区,其中南北两极的极区、地中海-伊朗高原-青藏高原-日本南部-北太平洋和南半球对流层顶断裂带中沿纬圈完整的空间波列最为显著.海洋上空臭氧通量的性质较为均匀一致,大陆上空的空间结构多变.北半球向下与向上的局地平均最大臭氧通量分别是-4μg·m^-2·s^-1和2.5μg·m^-2·s^-1,南半球的对应值为-2.5μg·m^-2·s^-1和1.5μg·m^-2·s^-1.(2)纬向平均的臭氧净通量依赖于纬度变化,北半球与南半球具有显著的非对称特性,总效应是平流层臭氧向对流层输运注入.臭氧通量有着显著的季节变化,可随不同季节在地理分布上发生空间转移现象,而且其控制机制不仅受对流层顶的季节运动影响,也随大气环境的季节调整而发生改变.(3)南北半球臭氧净通量的变化趋势相反,南半球为双峰结构。表现为非对称振幅的季节波动结构.全球臭氧通量振幅的年际变化表现出明显的QBO(Quasi-Biennial Oscillation)特性,年代际演变的结构形态(向下的臭氧净通量)可划分为4个阶段:1960年代是平稳变化期,1970年代为增强期,1980年代是又一个相对平稳期,1990年代为剧烈变化期.向下的臭氧净通量主极大值出现在1977、1990年和1998年,极小值在1993年和1996年.展开更多
文摘基于2005年NCEP/GFS分析资料和拉格朗日粒子扩散模式的"Domain Filling"技术,以气块穿越对流层顶后的滞留时间为标准,诊断分析了夏季亚洲季风区对流层-平流层质量交换,重点讨论了对平流层大气成分收支具有实际意义的不可逆双向质量交换过程,并利用前向(后向)轨迹追踪方法,分析了其4天的"源(汇)"特征.研究结果表明:(1)对流层-平流层质量交换(Troposphere-Stratosphere mass Exchange,STE)的计算对滞留时间阈值的选择具有较强敏感性,大多数的气块在1~2天内可频繁地往返对流层顶.这些瞬时交换事件的考虑与否对穿越对流层顶的质量交换计算的准确性具有重要影响,尤其在中纬度的风暴轴区域.(2)从亚洲季风区对流层-平流层质量净交换纬向平均上看,45°N以南的区域为对流层向平流层的质量输送(Troposphere to Stratosphere massTransport,TST),副热带地区为最强的上升支,而在45°N~55°N的中纬度地区是平流层向对流层质量输送(Stratosphere to Troposphere mass Transport,STT).地理分布上,STT主要分布在青藏高原以北的东亚地区,与亚洲季风区夏季大尺度的槽区相对应.夏季整个亚洲季风区都是TST发生的区域,最大值位于青藏高原东南侧及其附近区域,该区域占亚洲季风区不可逆TST夏季平均总量的46%.(3)对流层-平流层质量交换的"源汇"特征分析表明,STT主要源于100°E以西、50°N以北的高纬地区,向下可以输送到中国东北部及朝鲜半岛北部等中纬度区域.而TST主要来源于中纬度和副热带地区的大气输送,向上穿越对流层顶高度以后,可分别向高纬的极地和热带地区输送,这意味着亚洲季风区夏季的TST水汽输送可能进入"热带管"中,进而可能对全球平流层水汽平衡产生重要影响.
文摘用1958年到2001年44 a ECMWF资料,P坐标系下Wei公式诊断了全球对流层、平流层交换的季节变化.结果表明:印尼、孟加拉湾以及南美中西海岸附近是物质由对流层向平流层输送的主要通道.中高纬度地区同时存在向上、向下的通量,大尺度槽区伴随着平流层向下的输送.一年中,秋、冬季向下的输送强,春、夏季较弱.东亚地区存在很强的平流层向下的输送,且中心位置移动不大;只占北半球5.6%面积的东亚,其多年平均质量净交换量却占到北半球的15.83%,这说明东亚地区对流层与平流层之间的质量交换对北半球乃至全球对流层、平流层交换研究的重要性.从1958年到2001年,穿越对流层顶的空气都是更多地从平流层进入对流层,这与同化数据本身存在系统性偏差以及对流层顶高度44a来始终升高有关.南、北半球质量交换量以及质量交换通量对所占纬度带的贡献都是从赤道向两极逐渐增大,且北半球的贡献比南半球要大得多.高纬度地区单位面积上的质量交换量以及质量交换通量比低纬度要大,说明高纬度地区质量交换的效率要比低纬度更高.
文摘利用MERRA再分析资料,选取2007年江淮梅雨作为研究个例,通过对上对流层、下平流层(UTLS)区域3种化学示踪物(臭氧、一氧化碳和水汽)及位涡的水平与垂直分布变化的分析,探讨梅雨发生前后梅雨区上空的平流层—对流层物质交换(STE)特征。研究表明,梅雨期存在由对流层顶折卷造成的跨越对流层顶向下的物质传输和对流活动引起的物质向上传输。入梅前,主要是由对流层顶折卷造成的物质向下传输(至少能达到300 h Pa),这一过程导致对流层中上层存在高浓度臭氧及一个干层;随后,伴随梅雨的发生,对流活动频繁出现,对流层顶开始抬升,在入梅第二天已经恢复到对流层顶折卷过程发生之前的高度,对流层内的高浓度臭氧和干层也随对流层顶折卷的东移而移出梅雨区。还通过分析梅雨区臭氧和整个亚洲夏季风区臭氧的相对变化量发现,整个梅雨期的STE为物质的向下传输,在UTLS区,梅雨区对亚洲夏季风区的STE贡献为跨越对流层顶向下传输。
文摘利用1958-2001年的臭氧混合比和ECMWF(Europema Centre for Medium-range Weather Forecast)资料,采用Wei诊断模型定量计算了穿越全球对流层顶的臭氧质量通量.结果表明:(1)臭氧通量场存在纬向型和经向型的空间波列结构,这些空间波列均未能跨越对流层顶断裂带到达热带对流层顶控制区,其中南北两极的极区、地中海-伊朗高原-青藏高原-日本南部-北太平洋和南半球对流层顶断裂带中沿纬圈完整的空间波列最为显著.海洋上空臭氧通量的性质较为均匀一致,大陆上空的空间结构多变.北半球向下与向上的局地平均最大臭氧通量分别是-4μg·m^-2·s^-1和2.5μg·m^-2·s^-1,南半球的对应值为-2.5μg·m^-2·s^-1和1.5μg·m^-2·s^-1.(2)纬向平均的臭氧净通量依赖于纬度变化,北半球与南半球具有显著的非对称特性,总效应是平流层臭氧向对流层输运注入.臭氧通量有着显著的季节变化,可随不同季节在地理分布上发生空间转移现象,而且其控制机制不仅受对流层顶的季节运动影响,也随大气环境的季节调整而发生改变.(3)南北半球臭氧净通量的变化趋势相反,南半球为双峰结构。表现为非对称振幅的季节波动结构.全球臭氧通量振幅的年际变化表现出明显的QBO(Quasi-Biennial Oscillation)特性,年代际演变的结构形态(向下的臭氧净通量)可划分为4个阶段:1960年代是平稳变化期,1970年代为增强期,1980年代是又一个相对平稳期,1990年代为剧烈变化期.向下的臭氧净通量主极大值出现在1977、1990年和1998年,极小值在1993年和1996年.