The construction of the bridge across Taiwan Strait has been studied for a long time and the feasibility study that has attracted attention among scientists and engineers on both sides of the Taiwan Strait[1-4].The ke...The construction of the bridge across Taiwan Strait has been studied for a long time and the feasibility study that has attracted attention among scientists and engineers on both sides of the Taiwan Strait[1-4].The key question is whether this bridge and dike-road across Taiwan Strait can be constructed with present technology under such complex geological conditions or not.The results of current researches indicate that the sea floor of the Strait is covered with a horizontal layer composed of both the Pleistocene and the Holocene sandstone and shale with a thickness of about 200~300m.The distance from Pingtan island to China's Xinzhu seashore is 124 km,which might be connected by 4-6 section bridges and 5-7 section of dike-roads,and serve as a best program of the route in the north Strait section.The NE offshore fault along the Fujian coast and that along the west coast of Taiwan,China are the major tectonic lines separated by several NW faults under the upper horizontal layer,these fault 3D feature may be detecting by geo-tomography technique,which can help to deal with the foundation of bridge and dike-road piers.It is judged that the construction of bridge and dike-road beginning from Pingtan to the China's Xinzhu seashore is worth recommendation.In the procedure of the construction of large and high height bridges,must consider the steel structural member be detected by industrial CT technology,and might detect the pier of bridge and dike-road which built by steel tube and reinforced concrete at dike-roads two side,in order to get the hard basement and getting the depth of the pier extend below the sea-floor by the seismic tomographic detection method.展开更多
In conjunction with synchronous remotely sensed winds and sea surface temperature (SST), the spatiotemporal features of the Zhe-Min coastal current (ZMCC), especially responses of the ZMCC adjacent to Pingtan Isla...In conjunction with synchronous remotely sensed winds and sea surface temperature (SST), the spatiotemporal features of the Zhe-Min coastal current (ZMCC), especially responses of the ZMCC adjacent to Pingtan Island (PT) to the wintertime mon- soon relaxation in 2006 and corresponding mechanism are investigated based on the field observations. In situ data are ac- quired from Conductivity-Temperature-Depth (CTD) cruise and Bottom-Mounted Moorings (BMM), which are conducted during a comprehensive survey for the Chinese Offshore Investigation and Assessment Project in winter 2006. It is revealed that the ZMCC is well mixed vertically in winter 2006. The ZMCC (〈14℃) recedes during the relaxation of the wintertime monsoon and is accompanied by the enhanced northward shift of the warm, saline Taiwan Strait Mixed Water (TSMW, higher than 14~C and is constituted by the Taiwan Strait Warm Water and the Kuroshio Branch Water). And greatly enhanced south- ward intrusion of the ZMCC can be detected when the wintertime monsoon restores. Correspondingly, the thermal interface bounded by the ZMCC and the TSMW moves in the northwest/southeast direction, leading to periodic warm/cold reversals of the near-seabed temperature adjacent to the PT. By EOF (Empirical Orthogonal Function) analysis of the large-scale wind fields and wavelet power spectrum analysis of the water level, ocean current and the near-seabed temperature, responses of the ZMCC off the PT to wintertime monsoon relaxation are suggested to be attributed mainly to the southward propagating coast- ally trapped waves triggered by the impeding atmospheric fronts. As a result, ocean current and near-seabed temperature demonstrate significant quasi-5 d and quasi-10 d subtidal oscillations. By contrast, the onshore/offshore water accumulation resulted from Ekman advection driven by the local winds has minor contributions.展开更多
文摘The construction of the bridge across Taiwan Strait has been studied for a long time and the feasibility study that has attracted attention among scientists and engineers on both sides of the Taiwan Strait[1-4].The key question is whether this bridge and dike-road across Taiwan Strait can be constructed with present technology under such complex geological conditions or not.The results of current researches indicate that the sea floor of the Strait is covered with a horizontal layer composed of both the Pleistocene and the Holocene sandstone and shale with a thickness of about 200~300m.The distance from Pingtan island to China's Xinzhu seashore is 124 km,which might be connected by 4-6 section bridges and 5-7 section of dike-roads,and serve as a best program of the route in the north Strait section.The NE offshore fault along the Fujian coast and that along the west coast of Taiwan,China are the major tectonic lines separated by several NW faults under the upper horizontal layer,these fault 3D feature may be detecting by geo-tomography technique,which can help to deal with the foundation of bridge and dike-road piers.It is judged that the construction of bridge and dike-road beginning from Pingtan to the China's Xinzhu seashore is worth recommendation.In the procedure of the construction of large and high height bridges,must consider the steel structural member be detected by industrial CT technology,and might detect the pier of bridge and dike-road which built by steel tube and reinforced concrete at dike-roads two side,in order to get the hard basement and getting the depth of the pier extend below the sea-floor by the seismic tomographic detection method.
基金supported by National Natural Science Foundation of China(Grant Nos.41176031 and 40806013)Chinese Offshore Physical Oceanography and Marine Meteorology Investigation and Assessment Project(Grant No.908-ZC-I-01)National Basic Research Program of China(Grant No:.2011CB403504).
文摘In conjunction with synchronous remotely sensed winds and sea surface temperature (SST), the spatiotemporal features of the Zhe-Min coastal current (ZMCC), especially responses of the ZMCC adjacent to Pingtan Island (PT) to the wintertime mon- soon relaxation in 2006 and corresponding mechanism are investigated based on the field observations. In situ data are ac- quired from Conductivity-Temperature-Depth (CTD) cruise and Bottom-Mounted Moorings (BMM), which are conducted during a comprehensive survey for the Chinese Offshore Investigation and Assessment Project in winter 2006. It is revealed that the ZMCC is well mixed vertically in winter 2006. The ZMCC (〈14℃) recedes during the relaxation of the wintertime monsoon and is accompanied by the enhanced northward shift of the warm, saline Taiwan Strait Mixed Water (TSMW, higher than 14~C and is constituted by the Taiwan Strait Warm Water and the Kuroshio Branch Water). And greatly enhanced south- ward intrusion of the ZMCC can be detected when the wintertime monsoon restores. Correspondingly, the thermal interface bounded by the ZMCC and the TSMW moves in the northwest/southeast direction, leading to periodic warm/cold reversals of the near-seabed temperature adjacent to the PT. By EOF (Empirical Orthogonal Function) analysis of the large-scale wind fields and wavelet power spectrum analysis of the water level, ocean current and the near-seabed temperature, responses of the ZMCC off the PT to wintertime monsoon relaxation are suggested to be attributed mainly to the southward propagating coast- ally trapped waves triggered by the impeding atmospheric fronts. As a result, ocean current and near-seabed temperature demonstrate significant quasi-5 d and quasi-10 d subtidal oscillations. By contrast, the onshore/offshore water accumulation resulted from Ekman advection driven by the local winds has minor contributions.