Monthly temperature and precipitation time-series for the Zhujiang River Basin are analyzed in order to identify changes in climate extremes. Daily temperature and precipitation data from 1961 to 2007 of 192 meteorolo...Monthly temperature and precipitation time-series for the Zhujiang River Basin are analyzed in order to identify changes in climate extremes. Daily temperature and precipitation data from 1961 to 2007 of 192 meteorological stations are used. Two temperature indicators (monthly mean and monthly maximum mean) and three precipitation indicators (monthly total, monthly maximum consecutive 5-day precipitation, and monthly dry days) are analyzed. Tendencies in all five indicators can be observed. Many stations show significant positive trends (above the 90% confidence level) for monthly mean temperatures and monthly maximum mean temperatures. For all months, a significant increase in temperature from 1961 to 2007 can be observed in the entire basin with the coastal area in particular. Positive trends of precipitation extremes can be observed from January to March. Negative trends are detected from September to November. The number of dry days in October increased significantly at 40% of all meteorological stations. Stations with changes of monthly precipitation extremes are scattered over the Zhujiang River Basin. An aggregation of heat waves and droughts can be detected which is accompanied by significant increases of temperature extremes and the negative tendencies in precipitation extremes. The detection of tendencies in climate station density. extremes essentially relies on a good data quality and high展开更多
A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the character...A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the characteristics of the hydrolysis with this enzyme are still unclear. The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties of protease 894. After investigating the intrinsic relationship between the degree of hydrolysis and several factors, including initial reaction pH, temperature, substrate concentration, enzyme concentration, and hydrolysis time, the kinetics model was established. This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0, temperature of 30°C, substrate concentration of 10% (w/v), enzyme concentration of 2 500 U/g, and hydrolysis time of 160 min. The kinetic characteristics of the protease for the hydrolysis of P. martensii were obtained. The inactivation constant was found to be 15.16/min, and the average relative error between the derived kinetics model and the actual measurement was only 3.04%, which indicated a high degree of fitness. Therefore, this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease, which has potential applications in the food industry.展开更多
Pearl millet at various moisture content (6.2, 9.4 and 12.3%, d.b.) and feed rates (3, 6 and 9 kg/h) was ground using hammer mill and its physical properties viz. arithmetic mean diameter, geometric mean diameter,...Pearl millet at various moisture content (6.2, 9.4 and 12.3%, d.b.) and feed rates (3, 6 and 9 kg/h) was ground using hammer mill and its physical properties viz. arithmetic mean diameter, geometric mean diameter, thousand grain weight, aspect ratio, specific surface area, surface area and bulk density were studied. Sieve analysis results showed that the increase in moisture content produced more medium sized particles with decreased percent weight retained in pan. Bond's work index, Kick's constant and average particle size were increased with the decrease in total surface area at higher moisture levels. The highest energy (2.34 KWh/kg) was consumed for 12.3% moisture content. Various grinding characteristics were significantly affected by moisture content and feed rate either individually or in combination and correlated in terms of Bond's work index, Kick's constant, total surface area, average particle size, effectiveness of milling and bulk density. Milling loss was found to be higher at lower moisture level and decreased with the increase of moisture content as well as feed rate. The loose and compact bulk density was ranged between 46.8-199.5 kg m^-3and 53.5-254.1 kg m^-3, respectively among the entire sieve fractions. Water absorption capacity increased with the decrease in particle size,展开更多
Based on RegCM4,a climate model system,we simulated the distribution of the present climate(1961-1990)and the future climate(2010-2099),under emission scenarios of RCPs over the whole Pearl River Basin.From the climat...Based on RegCM4,a climate model system,we simulated the distribution of the present climate(1961-1990)and the future climate(2010-2099),under emission scenarios of RCPs over the whole Pearl River Basin.From the climate parameters,a set of mean precipitation,wet day frequency,and mean wet day intensity and several precipitation percentiles are used to assess the expected changes in daily precipitation characteristics for the 21 st century.Meanwhile the return values of precipitation intensity with an average return of 5,10,20,and 50 years are also used to assess the expected changes in precipitation extremes events in this study.The structure of the change across the precipitation distribution is very coherent between RCP4.5 and RCP8.5.The annual,spring and winter average precipitation decreases while the summer and autumn average precipitation increases.The basic diagnostics of precipitation show that the frequency of precipitation is projected to decrease but the intensity is projected to increase.The wet day percentiles(q90 and q95) also increase,indicating that precipitation extremes intensity will increase in the future.Meanwhile,the5-year return value tends to increase by 30%-45%in the basins of Liujiang River,Red Water River,Guihe River and Pearl River Delta region,where the 5-year return value of future climate corresponds to the 8-to 10-year return value of the present climate,and the 50-year return value corresponds to the 100-year return value of the present climate over the Pearl River Delta region in the 2080 s under RCP8.5,which indicates that the warming environment will give rise to changes in the intensity and frequency of extreme precipitation events.展开更多
Ozone pollution over the Pearl River Delta (PRD) in October 2004 has been simulated using the regional air quality models Models-3/CMAQ and CAMx. The results from both models were evaluated and compared with the obser...Ozone pollution over the Pearl River Delta (PRD) in October 2004 has been simulated using the regional air quality models Models-3/CMAQ and CAMx. The results from both models were evaluated and compared with the observed concentrations from 12 monitoring stations. By integrated process rate analysis, the influences of different physical and chemical processes were quantified, and the causes of the deviations between the two models were investigated. Both CMAQ and CAMx repro- duced the magnitudes and variations of ozone at most stations over the PRD. The correlation coefficients (R) between the sim- ulated results and monitoring data were 0.73 for CMAQ and 0.74 for CAMx. The normalized mean bias (NMB) for CMAQ and CAMx over the 12 sites was ?8.5% and 8.8% on average, respectively. The normalized mean error (NME) for CMAQ and CAMx was 36.7% and 37.9%, respectively. The correlation between the results of two models was very high (R = 0.92), and their simulated ozone spatial distributions exhibited common features. But the values obtained using CMAQ simulation were about 17% lower than those obtained using CAMx on average. The results of simulations using the two models were not identical in certain regions, or for different types of monitoring stations. The differences in dry deposition, reaction parameters and vertical transport near the Pearl River Estuary can account for the discrepancies in the results obtained using the two models. In the upwind areas, the discrepancy in the boundary concentration of the finest nest was the main cause of the higher values obtained using CAMx compared with those obtained using CMAQ. There is a need for CAMx to provide more choices of dry deposition algo- rithms. Improvement of the calculation methods for photolysis rates would also improve the ozone simulation of CMAQ.展开更多
基金the National Basic Research Program of China(973 Program)(No. 2010CB428401)the Special Fund of Climate Change of the China Meteorological Administration (CCSF-09-16)by the National Natural Science Foundation of China(40910177)
文摘Monthly temperature and precipitation time-series for the Zhujiang River Basin are analyzed in order to identify changes in climate extremes. Daily temperature and precipitation data from 1961 to 2007 of 192 meteorological stations are used. Two temperature indicators (monthly mean and monthly maximum mean) and three precipitation indicators (monthly total, monthly maximum consecutive 5-day precipitation, and monthly dry days) are analyzed. Tendencies in all five indicators can be observed. Many stations show significant positive trends (above the 90% confidence level) for monthly mean temperatures and monthly maximum mean temperatures. For all months, a significant increase in temperature from 1961 to 2007 can be observed in the entire basin with the coastal area in particular. Positive trends of precipitation extremes can be observed from January to March. Negative trends are detected from September to November. The number of dry days in October increased significantly at 40% of all meteorological stations. Stations with changes of monthly precipitation extremes are scattered over the Zhujiang River Basin. An aggregation of heat waves and droughts can be detected which is accompanied by significant increases of temperature extremes and the negative tendencies in precipitation extremes. The detection of tendencies in climate station density. extremes essentially relies on a good data quality and high
基金Supported by the Comprehensive Strategic Cooperation Programs between Guangdong Province and Chinese Academy of Sciences(No.2011A090100008)the Knowledge Innovation Program of Chinese Academy of Sciences(No.KZCX2-EW-Q214)
文摘A new enzyme (alkaline protease 894) obtained from the marine extremophile Flavobacterium yellowsea (YS-80-122) has exhibited strong substrate-binding and catalytic activity, even at low temperature, but the characteristics of the hydrolysis with this enzyme are still unclear. The pearl oyster Pinctada martensii was used in this study as the raw material to illustrate the kinetic properties of protease 894. After investigating the intrinsic relationship between the degree of hydrolysis and several factors, including initial reaction pH, temperature, substrate concentration, enzyme concentration, and hydrolysis time, the kinetics model was established. This study showed that the optimal conditions for the enzymatic hydrolysis were an initial reaction pH of 5.0, temperature of 30°C, substrate concentration of 10% (w/v), enzyme concentration of 2 500 U/g, and hydrolysis time of 160 min. The kinetic characteristics of the protease for the hydrolysis of P. martensii were obtained. The inactivation constant was found to be 15.16/min, and the average relative error between the derived kinetics model and the actual measurement was only 3.04%, which indicated a high degree of fitness. Therefore, this study provides a basis for the investigation of the concrete kinetic characteristics of the new protease, which has potential applications in the food industry.
文摘Pearl millet at various moisture content (6.2, 9.4 and 12.3%, d.b.) and feed rates (3, 6 and 9 kg/h) was ground using hammer mill and its physical properties viz. arithmetic mean diameter, geometric mean diameter, thousand grain weight, aspect ratio, specific surface area, surface area and bulk density were studied. Sieve analysis results showed that the increase in moisture content produced more medium sized particles with decreased percent weight retained in pan. Bond's work index, Kick's constant and average particle size were increased with the decrease in total surface area at higher moisture levels. The highest energy (2.34 KWh/kg) was consumed for 12.3% moisture content. Various grinding characteristics were significantly affected by moisture content and feed rate either individually or in combination and correlated in terms of Bond's work index, Kick's constant, total surface area, average particle size, effectiveness of milling and bulk density. Milling loss was found to be higher at lower moisture level and decreased with the increase of moisture content as well as feed rate. The loose and compact bulk density was ranged between 46.8-199.5 kg m^-3and 53.5-254.1 kg m^-3, respectively among the entire sieve fractions. Water absorption capacity increased with the decrease in particle size,
基金Specialized Research Project for Public Welfare Industries(Meteorology)from the Ministry of Science and Technology(GYHY201406025)Specialized Project for Climate Change from China Meteorological Administration(CCSF201404,CCSF2011-25,CCSF201211CCSF 2011-25)+2 种基金Specialized Foundation for Low Carbon Development in Guangdong Province(2012-019)Foundation of Science Innovation Teams for Guangdong Meteorological Bureau(201102)Science and Technology Planning Project for Guangdong Province(2012A061400012)
文摘Based on RegCM4,a climate model system,we simulated the distribution of the present climate(1961-1990)and the future climate(2010-2099),under emission scenarios of RCPs over the whole Pearl River Basin.From the climate parameters,a set of mean precipitation,wet day frequency,and mean wet day intensity and several precipitation percentiles are used to assess the expected changes in daily precipitation characteristics for the 21 st century.Meanwhile the return values of precipitation intensity with an average return of 5,10,20,and 50 years are also used to assess the expected changes in precipitation extremes events in this study.The structure of the change across the precipitation distribution is very coherent between RCP4.5 and RCP8.5.The annual,spring and winter average precipitation decreases while the summer and autumn average precipitation increases.The basic diagnostics of precipitation show that the frequency of precipitation is projected to decrease but the intensity is projected to increase.The wet day percentiles(q90 and q95) also increase,indicating that precipitation extremes intensity will increase in the future.Meanwhile,the5-year return value tends to increase by 30%-45%in the basins of Liujiang River,Red Water River,Guihe River and Pearl River Delta region,where the 5-year return value of future climate corresponds to the 8-to 10-year return value of the present climate,and the 50-year return value corresponds to the 100-year return value of the present climate over the Pearl River Delta region in the 2080 s under RCP8.5,which indicates that the warming environment will give rise to changes in the intensity and frequency of extreme precipitation events.
基金supported by theNational High Technology Research and Development Program of China (2006AA06A306 & 2006AA06A308)a special fund of the State Key Joint Laboratory of Environmental Simulation and Pollution Controlthe European Commission Framework Program 7 Project CityZen (212095)
文摘Ozone pollution over the Pearl River Delta (PRD) in October 2004 has been simulated using the regional air quality models Models-3/CMAQ and CAMx. The results from both models were evaluated and compared with the observed concentrations from 12 monitoring stations. By integrated process rate analysis, the influences of different physical and chemical processes were quantified, and the causes of the deviations between the two models were investigated. Both CMAQ and CAMx repro- duced the magnitudes and variations of ozone at most stations over the PRD. The correlation coefficients (R) between the sim- ulated results and monitoring data were 0.73 for CMAQ and 0.74 for CAMx. The normalized mean bias (NMB) for CMAQ and CAMx over the 12 sites was ?8.5% and 8.8% on average, respectively. The normalized mean error (NME) for CMAQ and CAMx was 36.7% and 37.9%, respectively. The correlation between the results of two models was very high (R = 0.92), and their simulated ozone spatial distributions exhibited common features. But the values obtained using CMAQ simulation were about 17% lower than those obtained using CAMx on average. The results of simulations using the two models were not identical in certain regions, or for different types of monitoring stations. The differences in dry deposition, reaction parameters and vertical transport near the Pearl River Estuary can account for the discrepancies in the results obtained using the two models. In the upwind areas, the discrepancy in the boundary concentration of the finest nest was the main cause of the higher values obtained using CAMx compared with those obtained using CMAQ. There is a need for CAMx to provide more choices of dry deposition algo- rithms. Improvement of the calculation methods for photolysis rates would also improve the ozone simulation of CMAQ.