针对多极化高分辨率一维距离像(high range resolution profile,HRRP)在目标识别过程中存在计算量和数据量大、识别算法复杂的问题,提出一种基于Bagging-SVM动态集成的目标识别方法。该方法首先提取多极化HRRP平移不变特征向量,然后运用...针对多极化高分辨率一维距离像(high range resolution profile,HRRP)在目标识别过程中存在计算量和数据量大、识别算法复杂的问题,提出一种基于Bagging-SVM动态集成的目标识别方法。该方法首先提取多极化HRRP平移不变特征向量,然后运用Bagging方法结合基于动态互信息的特征选择方法生成基分类器,最后引入基分类器差异度进行选择性集成。实验验证该方法在缩减数据规模和计算量的同时,能有效利用多极化特征信息,得到较高的分类正确率,并且松弛了HRRP目标的姿态敏感性。展开更多
文摘针对多极化高分辨率一维距离像(high range resolution profile,HRRP)在目标识别过程中存在计算量和数据量大、识别算法复杂的问题,提出一种基于Bagging-SVM动态集成的目标识别方法。该方法首先提取多极化HRRP平移不变特征向量,然后运用Bagging方法结合基于动态互信息的特征选择方法生成基分类器,最后引入基分类器差异度进行选择性集成。实验验证该方法在缩减数据规模和计算量的同时,能有效利用多极化特征信息,得到较高的分类正确率,并且松弛了HRRP目标的姿态敏感性。