By means of the numerical simulation software ANSYS, the activation regularity of coal floor faults caused by mining is simulated. The results indicate that the variation in horizontal, vertical and shear stresses, as...By means of the numerical simulation software ANSYS, the activation regularity of coal floor faults caused by mining is simulated. The results indicate that the variation in horizontal, vertical and shear stresses, as well as the horizontal and vertical displacements in the upper and the lower fault blocks at the workface are almost identical. Influ- enced by mining of the floor rock, there are stress releasing and stress rising areas at the upper part and at the footwall of the fault. The distribution of stress is influenced by the fault so that the stress isolines are staggered by the fault face and the stress is focused on the rock seam around the two ends of the fault. But the influence in fault activation on the upper or the lower fault blocks of the workface is markedly different. When the workface is on the footwall of the fault, there is a horizontal tension stress area on the upper part of the fault; when the workface is on the upper part of the fault, it has a horizontal compressive stress area on the lower fault block. When the workface is at the lower fault block, the maximum vertical displacement is 5 times larger then when the workface is on the upper fault block, which greatly in- creases the chance of a fatal inrush of water from the coal floor.展开更多
In this paper we classify cylindrically symmetric static space-times according to their teleparallel homothetic vector fields using direct integration technique. It turns out that the dimensions of the teleparallel ho...In this paper we classify cylindrically symmetric static space-times according to their teleparallel homothetic vector fields using direct integration technique. It turns out that the dimensions of the teleparallel homothetic vector fields are 4, 5, 7 or 11, which are the same in numbers as in general relativity. In case of 4, 5 or 7 proper teleparallel homothetic vector fields exist for the special choice to the space-times. In the case of 11 teleparallel homothetic vector fields the space-time becomes Minkowski with all the zero torsion components. Teleparallel homothetic vector fields in this case are exactly the same as in general relativity. It is important to note that this classification also covers the plane symmetric static space-times.展开更多
The increasing overlap of core and colony populations during the anaphase of evolution may limit the performance of shifting balance genetic algorithms. To decrease such overlapping,so as to increase the local search ...The increasing overlap of core and colony populations during the anaphase of evolution may limit the performance of shifting balance genetic algorithms. To decrease such overlapping,so as to increase the local search capability of the core population,the sub-space method was used to generate uniformly distributed initial colony populations over the decision variable space. The core population was also dynamically divided,making simultaneous searching in several local spaces possible. The algorithm proposed in this paper was compared to the original one by searching for the optimum of a complicated multi-modal function. The results indicate that the solutions obtained by the modified algorithm are better than those of the original algorithm.展开更多
The effective stress method is developed to predict the axial capacity of piles in clay. The effective stress state changes due to the resulting pore pressure change and therefore, the strength and stiffness of the so...The effective stress method is developed to predict the axial capacity of piles in clay. The effective stress state changes due to the resulting pore pressure change and therefore, the strength and stiffness of the soil will change. In this work, the finite element method is utilized as a tool for the analysis of pile-soil systems in undrained condition. The computer program CRISP was developed to suit the problem requirements. CRISP uses the finite element technique and allows predictions to be made of ground deformation using critical state theories. Eight-node isoparametric element was added to the program in addition to the slip element. A pile loading problem was solved in which the pile-soil system is analyzed in undrained condition. The pile is modelled as elastic-plastic material, while the soil is assumed to follow the modified Cam clay model. During undrained loading condition, the settlement values increase by 22% when slip elements are used. The surface settlement increases by about three times when the load is doubled and the surface settlement at all points increases when using slip elements due to the mode of motion which allows smooth movement of the adjacent soil with respect to the pile. The vertical displacement increases as the distance decreases from the pile and negligible values are obtained beyond 10D (where D is the pile diameter) from the center of the pile and these values are slightly increased when slip elements are used. The vertical effective stress along a section at a distance D from the pile center is approximately the same for all load increments and lower values of effective vertical stress can be obtained when slip elements are used.展开更多
In this paper we classify Kantowski-Sachs and Bianchi type Ⅲ space-times according to their teleparallel Killing vector fields using direct integration technique. It turns out that the dimension of the telepaxallel K...In this paper we classify Kantowski-Sachs and Bianchi type Ⅲ space-times according to their teleparallel Killing vector fields using direct integration technique. It turns out that the dimension of the telepaxallel Killing vector fields are 4 or 6, which are the same in numbers as in general relativity. In case of 4 the teleparallel Killing vector fields are multiple of the corresponding Killing vector fields in general relativity by some function of t. In the case of 6 Killing vector fields the metric functions become constants and the Killing vector fields in this case are exactly the same as in general relativity. Here we also discuss the Lie algebra in each case.展开更多
Based on the engineering project on a small coal pillar of 12,521 working face roadway in Xieqiao Coalmine, data regarding surface displacements of the coal pillar, deep displacements and mining stress have been colle...Based on the engineering project on a small coal pillar of 12,521 working face roadway in Xieqiao Coalmine, data regarding surface displacements of the coal pillar, deep displacements and mining stress have been collected and analyzed. The results show that macroscopic transverse fractures of the inner coal pillar are developed within 2–4 m of the roadway surface, which is located outside the coal pillar anchorage zone. There is a displacement of 530 mm at the monitoring point in the 6 m deep zone of the pillar. Transfer of the fracture zone is found in a small coal pillar and the fractures within 3–4 m of the coal-rock zone from the roadway surface undergo propagation and closure of cracks which means this fracture zone is transferred from 3–4 m outside the roadway to only 2–3 m from the roadway surface. In the monitoring zone, vertical and horizontal stresses increase with a feature that shows that acceleration in the deep zone of the pillar is greater than that in the shallow zone. Furthermore, the acceleration of vertical stress is also greater than that of horizontal stress with a peak value in the 4 m zone.The research findings provide a reference for the regulation of a reasonable width of coal pillar in coalmines and optimal control design of surrounding rock.展开更多
A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it ...A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it is just considered that the potential sliding surface is a composite of a number of straight lines. And then, the potential sliding mass is divided into a number of triangular wedges take with these straight lines as its base. The kinematic theorem of limit analysis is adopted to calculate the rate of external work and the rate of energy dissipation for each triangular wedge, respectively. Furthermore, the multivariate functions are established to calculate the lateral force acting on the stabilizing piles. The lateral force and the corresponding potential sliding surfaces can be obtained by an optimizational technique. At last, an example is taken to illustrate the method. The effect of soil strength parameters, slope angle and pile roughness on the lateral force and the corresponding potential sliding surface are analyzed.The result are compared with those obtained using other methods.展开更多
In this paper we classify spatially homogeneous rotating space-times according to their teleparallel Killing vector fields using direct integration technique.It turns out that the dimension of the teleparallel Killing...In this paper we classify spatially homogeneous rotating space-times according to their teleparallel Killing vector fields using direct integration technique.It turns out that the dimension of the teleparallel Killing vector fields is 5 or 10.In the case of 10 teleparallel Killing vector fields the space-time becomes Minkowski and all the torsion components are zero.Teleparallel Killing vector fields in this case are exactly the same as in general relativity.In the cases of 5 teleparallel Killing vector fields we get two more conservation laws in the teleparallel theory of gravitation.Here we also discuss some well-known examples of spatially homogeneous rotating space-times according to their teleparallel Killing vector fields.展开更多
Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic ...Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic behavior of parallel moving ships in waves is an interesting and important topic of late.A numerical investigation has been carried out for the prediction of wave exciting forces and motion responses of parallel moving ships in regular waves.The numerical solution was based on 3D distribution technique and using the linear wave theory to determine the exciting forces and ship's motion.The speed effects have been considered in the Green function for more realistic results.The numerical computations of wave exciting forces and motion responses were carried out for a Mariner and Series 60 for the purpose of discovering different Froude numbers and different separation distances in head sea conditions.Based on the numerical computations,it was revealed that the sway,roll and yaw have a significant effect due to hydrodynamic interaction.展开更多
When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is use...When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is used to deduce critical support load and limiting column length for a given horizontal stress and support pressure.Considering the impact of the column effect,a method is proposed to determine the movement of the ground and caving area in a mine.After surface subsidence,the horizontal stress on a surrounding rock mass can be simplified to a cantilever beam mechanical model.Expressions for its bending fracture length are deduced,and a method is given to determine its stability.On this basis,an explanation for the large ground movement and subsidence scope was given.A case study shows that the damage effect of column and cantilever beam is significant for ground movement in metal-ore mine,and an appropriate correction value should be applied when designing for its angle of ground movements.展开更多
基金Projects 50490273 and 50574090 supported by the National Natural Science Foundation of China, and 106084 by the Ministry of Education
文摘By means of the numerical simulation software ANSYS, the activation regularity of coal floor faults caused by mining is simulated. The results indicate that the variation in horizontal, vertical and shear stresses, as well as the horizontal and vertical displacements in the upper and the lower fault blocks at the workface are almost identical. Influ- enced by mining of the floor rock, there are stress releasing and stress rising areas at the upper part and at the footwall of the fault. The distribution of stress is influenced by the fault so that the stress isolines are staggered by the fault face and the stress is focused on the rock seam around the two ends of the fault. But the influence in fault activation on the upper or the lower fault blocks of the workface is markedly different. When the workface is on the footwall of the fault, there is a horizontal tension stress area on the upper part of the fault; when the workface is on the upper part of the fault, it has a horizontal compressive stress area on the lower fault block. When the workface is at the lower fault block, the maximum vertical displacement is 5 times larger then when the workface is on the upper fault block, which greatly in- creases the chance of a fatal inrush of water from the coal floor.
文摘In this paper we classify cylindrically symmetric static space-times according to their teleparallel homothetic vector fields using direct integration technique. It turns out that the dimensions of the teleparallel homothetic vector fields are 4, 5, 7 or 11, which are the same in numbers as in general relativity. In case of 4, 5 or 7 proper teleparallel homothetic vector fields exist for the special choice to the space-times. In the case of 11 teleparallel homothetic vector fields the space-time becomes Minkowski with all the zero torsion components. Teleparallel homothetic vector fields in this case are exactly the same as in general relativity. It is important to note that this classification also covers the plane symmetric static space-times.
基金Project 60575046 supported by the National Natural Science Foundation of China
文摘The increasing overlap of core and colony populations during the anaphase of evolution may limit the performance of shifting balance genetic algorithms. To decrease such overlapping,so as to increase the local search capability of the core population,the sub-space method was used to generate uniformly distributed initial colony populations over the decision variable space. The core population was also dynamically divided,making simultaneous searching in several local spaces possible. The algorithm proposed in this paper was compared to the original one by searching for the optimum of a complicated multi-modal function. The results indicate that the solutions obtained by the modified algorithm are better than those of the original algorithm.
基金Project(RG086/10AET) supported by the Institute of Research Management and Monitoring (IPPP),University of Malaya (UM) under UMRG grant number,Malaysia
文摘The effective stress method is developed to predict the axial capacity of piles in clay. The effective stress state changes due to the resulting pore pressure change and therefore, the strength and stiffness of the soil will change. In this work, the finite element method is utilized as a tool for the analysis of pile-soil systems in undrained condition. The computer program CRISP was developed to suit the problem requirements. CRISP uses the finite element technique and allows predictions to be made of ground deformation using critical state theories. Eight-node isoparametric element was added to the program in addition to the slip element. A pile loading problem was solved in which the pile-soil system is analyzed in undrained condition. The pile is modelled as elastic-plastic material, while the soil is assumed to follow the modified Cam clay model. During undrained loading condition, the settlement values increase by 22% when slip elements are used. The surface settlement increases by about three times when the load is doubled and the surface settlement at all points increases when using slip elements due to the mode of motion which allows smooth movement of the adjacent soil with respect to the pile. The vertical displacement increases as the distance decreases from the pile and negligible values are obtained beyond 10D (where D is the pile diameter) from the center of the pile and these values are slightly increased when slip elements are used. The vertical effective stress along a section at a distance D from the pile center is approximately the same for all load increments and lower values of effective vertical stress can be obtained when slip elements are used.
文摘In this paper we classify Kantowski-Sachs and Bianchi type Ⅲ space-times according to their teleparallel Killing vector fields using direct integration technique. It turns out that the dimension of the telepaxallel Killing vector fields are 4 or 6, which are the same in numbers as in general relativity. In case of 4 the teleparallel Killing vector fields are multiple of the corresponding Killing vector fields in general relativity by some function of t. In the case of 6 Killing vector fields the metric functions become constants and the Killing vector fields in this case are exactly the same as in general relativity. Here we also discuss the Lie algebra in each case.
基金the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1084)the Open Fund of Hunan provincial Key Laboratory for Safe Mining Technology of Coal Mine (No. 201103)the National Natural Science Foundation of China (No. 51274193)
文摘Based on the engineering project on a small coal pillar of 12,521 working face roadway in Xieqiao Coalmine, data regarding surface displacements of the coal pillar, deep displacements and mining stress have been collected and analyzed. The results show that macroscopic transverse fractures of the inner coal pillar are developed within 2–4 m of the roadway surface, which is located outside the coal pillar anchorage zone. There is a displacement of 530 mm at the monitoring point in the 6 m deep zone of the pillar. Transfer of the fracture zone is found in a small coal pillar and the fractures within 3–4 m of the coal-rock zone from the roadway surface undergo propagation and closure of cracks which means this fracture zone is transferred from 3–4 m outside the roadway to only 2–3 m from the roadway surface. In the monitoring zone, vertical and horizontal stresses increase with a feature that shows that acceleration in the deep zone of the pillar is greater than that in the shallow zone. Furthermore, the acceleration of vertical stress is also greater than that of horizontal stress with a peak value in the 4 m zone.The research findings provide a reference for the regulation of a reasonable width of coal pillar in coalmines and optimal control design of surrounding rock.
基金Projects(SKLGP2012K024,SKLGP2013K012)supported by the Opening Fund of State Key Laboratory of Geohazard Prevention and Ceoenvironment Protection,ChinaProject(2011BAK12B03)supported by the National Technology Project,ChinaProject(41401004)supported by the National Natural Science Foundation of China
文摘A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it is just considered that the potential sliding surface is a composite of a number of straight lines. And then, the potential sliding mass is divided into a number of triangular wedges take with these straight lines as its base. The kinematic theorem of limit analysis is adopted to calculate the rate of external work and the rate of energy dissipation for each triangular wedge, respectively. Furthermore, the multivariate functions are established to calculate the lateral force acting on the stabilizing piles. The lateral force and the corresponding potential sliding surfaces can be obtained by an optimizational technique. At last, an example is taken to illustrate the method. The effect of soil strength parameters, slope angle and pile roughness on the lateral force and the corresponding potential sliding surface are analyzed.The result are compared with those obtained using other methods.
文摘In this paper we classify spatially homogeneous rotating space-times according to their teleparallel Killing vector fields using direct integration technique.It turns out that the dimension of the teleparallel Killing vector fields is 5 or 10.In the case of 10 teleparallel Killing vector fields the space-time becomes Minkowski and all the torsion components are zero.Teleparallel Killing vector fields in this case are exactly the same as in general relativity.In the cases of 5 teleparallel Killing vector fields we get two more conservation laws in the teleparallel theory of gravitation.Here we also discuss some well-known examples of spatially homogeneous rotating space-times according to their teleparallel Killing vector fields.
基金support of JASSO to conduct this research work during the author’s stay at Japan
文摘Nowadays,there are many studies conducted in the field of marine hydrodynamics which focus on two vessels traveling and floating in sufficiently close proximity to experience significant interactions.The hydrodynamic behavior of parallel moving ships in waves is an interesting and important topic of late.A numerical investigation has been carried out for the prediction of wave exciting forces and motion responses of parallel moving ships in regular waves.The numerical solution was based on 3D distribution technique and using the linear wave theory to determine the exciting forces and ship's motion.The speed effects have been considered in the Green function for more realistic results.The numerical computations of wave exciting forces and motion responses were carried out for a Mariner and Series 60 for the purpose of discovering different Froude numbers and different separation distances in head sea conditions.Based on the numerical computations,it was revealed that the sway,roll and yaw have a significant effect due to hydrodynamic interaction.
基金Project(51274188)supported by the National Natural Science Foundation of China
文摘When mining metal mines with steep structure planes by the caving method,there is a mechanical model in which the horizontal stress on the rock mass is simplified as a column before surface subsidence.The model is used to deduce critical support load and limiting column length for a given horizontal stress and support pressure.Considering the impact of the column effect,a method is proposed to determine the movement of the ground and caving area in a mine.After surface subsidence,the horizontal stress on a surrounding rock mass can be simplified to a cantilever beam mechanical model.Expressions for its bending fracture length are deduced,and a method is given to determine its stability.On this basis,an explanation for the large ground movement and subsidence scope was given.A case study shows that the damage effect of column and cantilever beam is significant for ground movement in metal-ore mine,and an appropriate correction value should be applied when designing for its angle of ground movements.