Based on the engineering project on a small coal pillar of 12,521 working face roadway in Xieqiao Coalmine, data regarding surface displacements of the coal pillar, deep displacements and mining stress have been colle...Based on the engineering project on a small coal pillar of 12,521 working face roadway in Xieqiao Coalmine, data regarding surface displacements of the coal pillar, deep displacements and mining stress have been collected and analyzed. The results show that macroscopic transverse fractures of the inner coal pillar are developed within 2–4 m of the roadway surface, which is located outside the coal pillar anchorage zone. There is a displacement of 530 mm at the monitoring point in the 6 m deep zone of the pillar. Transfer of the fracture zone is found in a small coal pillar and the fractures within 3–4 m of the coal-rock zone from the roadway surface undergo propagation and closure of cracks which means this fracture zone is transferred from 3–4 m outside the roadway to only 2–3 m from the roadway surface. In the monitoring zone, vertical and horizontal stresses increase with a feature that shows that acceleration in the deep zone of the pillar is greater than that in the shallow zone. Furthermore, the acceleration of vertical stress is also greater than that of horizontal stress with a peak value in the 4 m zone.The research findings provide a reference for the regulation of a reasonable width of coal pillar in coalmines and optimal control design of surrounding rock.展开更多
A strain smoothing formulation for NURBS (non-uniform rational B-splines) based isogeometric finite element analysis is presented. This approach is formulated within the framework of assumed strain methods and strain ...A strain smoothing formulation for NURBS (non-uniform rational B-splines) based isogeometric finite element analysis is presented. This approach is formulated within the framework of assumed strain methods and strain smoothing operations. The strain smoothing is defined through strain averaging in the element sub-domains which are subsequently used for numerical integration of the Galerkin weak form. This formulation satisfies the orthogonality condition of the assumed strain methods. Meanwhile the present formulation totally avoids the gradient computation of the rational NURBS basis functions in the formulation of stiffness matrix. A transformation method is employed to accurately enforce the displacement boundary conditions. Numerical results demonstrate that the present formation gives very satisfactory solution accuracy simultaneously with improved computational efficiency.展开更多
基金the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1084)the Open Fund of Hunan provincial Key Laboratory for Safe Mining Technology of Coal Mine (No. 201103)the National Natural Science Foundation of China (No. 51274193)
文摘Based on the engineering project on a small coal pillar of 12,521 working face roadway in Xieqiao Coalmine, data regarding surface displacements of the coal pillar, deep displacements and mining stress have been collected and analyzed. The results show that macroscopic transverse fractures of the inner coal pillar are developed within 2–4 m of the roadway surface, which is located outside the coal pillar anchorage zone. There is a displacement of 530 mm at the monitoring point in the 6 m deep zone of the pillar. Transfer of the fracture zone is found in a small coal pillar and the fractures within 3–4 m of the coal-rock zone from the roadway surface undergo propagation and closure of cracks which means this fracture zone is transferred from 3–4 m outside the roadway to only 2–3 m from the roadway surface. In the monitoring zone, vertical and horizontal stresses increase with a feature that shows that acceleration in the deep zone of the pillar is greater than that in the shallow zone. Furthermore, the acceleration of vertical stress is also greater than that of horizontal stress with a peak value in the 4 m zone.The research findings provide a reference for the regulation of a reasonable width of coal pillar in coalmines and optimal control design of surrounding rock.
基金supported by the National Natural Science Foundation of China (Grant No. 10972188)the Program for New Century Excellent Talents in University from China Ministry of Education (Grant No. NCET-09-0678)the Fundamental Research Funds for the Central Universities of China (Grant No. 2010121073)
文摘A strain smoothing formulation for NURBS (non-uniform rational B-splines) based isogeometric finite element analysis is presented. This approach is formulated within the framework of assumed strain methods and strain smoothing operations. The strain smoothing is defined through strain averaging in the element sub-domains which are subsequently used for numerical integration of the Galerkin weak form. This formulation satisfies the orthogonality condition of the assumed strain methods. Meanwhile the present formulation totally avoids the gradient computation of the rational NURBS basis functions in the formulation of stiffness matrix. A transformation method is employed to accurately enforce the displacement boundary conditions. Numerical results demonstrate that the present formation gives very satisfactory solution accuracy simultaneously with improved computational efficiency.