Changbaishan volcano is the largest potential eruptive volcano in China.In this paper,seismic activity,horizontal displacement,vertical displacement and the fluid geochemistry data acquiring from Changbaishan Tianchi ...Changbaishan volcano is the largest potential eruptive volcano in China.In this paper,seismic activity,horizontal displacement,vertical displacement and the fluid geochemistry data acquiring from Changbaishan Tianchi Volcano Observatory(TVO) in recent years are analyzed.The authors discussed the ability for the Changbaishan volcanic seismic monitoring and active level of Changbaishan volcano in recent years based on the fundamental monitoring results.The results show that Changbaishan volcano has experienced an unrest episode from 2002 to 2005,but its active level recovers to the background now.展开更多
Based on the 21 series of the high precision tidal gravity observations recorded using superconducting gravimeters (SG) at 14 stations distributed globally (in to-tally about 86 years), the translational oscillations ...Based on the 21 series of the high precision tidal gravity observations recorded using superconducting gravimeters (SG) at 14 stations distributed globally (in to-tally about 86 years), the translational oscillations of the Earth抯 solid inner core (ESIC) is detected in this paper. All observations are divided into two groups with G-Ⅰ group (8 relatively longer observational series) and G-Ⅱ group (13 relatively shorter observational series). The detailed correc-tions to minute original observations for each station are carried out, the error data due to the earthquakes, power supply impulses and some perturbations as change in at-mospheric pressure and so on are carefully deleted for the first step, the gravity residuals are obtained after removing further synthetic tidal gravity signals. The Fast Fourier Transform analysis is carried out for each residual series, the estimations of the product spectral densities in the sub-tidal band are obtained by using a multi-station staking technique. The 8 common peaks are found after further removing the remaining frequency dependent pressure signals. The eigen-periods, quality factors and resonant strengths for these peaks are simulated. The numerical results show that the discrepancies of the eigenperiods for 3 of 8 peaks, compared to those of theoretical computation given by Smith, are only 0.4%, -0.4% and 1.0%. This coincidence signifies that the dynamical phenomenon of the Earths solid inner core can be detected by using high precision ground gravity observations. The reliability of the numerical computation is also checked, the spectral peak splitting phenomenon induced by Earths rotation and ellipticity is preliminary discussed in this paper.展开更多
文摘Changbaishan volcano is the largest potential eruptive volcano in China.In this paper,seismic activity,horizontal displacement,vertical displacement and the fluid geochemistry data acquiring from Changbaishan Tianchi Volcano Observatory(TVO) in recent years are analyzed.The authors discussed the ability for the Changbaishan volcanic seismic monitoring and active level of Changbaishan volcano in recent years based on the fundamental monitoring results.The results show that Changbaishan volcano has experienced an unrest episode from 2002 to 2005,but its active level recovers to the background now.
文摘Based on the 21 series of the high precision tidal gravity observations recorded using superconducting gravimeters (SG) at 14 stations distributed globally (in to-tally about 86 years), the translational oscillations of the Earth抯 solid inner core (ESIC) is detected in this paper. All observations are divided into two groups with G-Ⅰ group (8 relatively longer observational series) and G-Ⅱ group (13 relatively shorter observational series). The detailed correc-tions to minute original observations for each station are carried out, the error data due to the earthquakes, power supply impulses and some perturbations as change in at-mospheric pressure and so on are carefully deleted for the first step, the gravity residuals are obtained after removing further synthetic tidal gravity signals. The Fast Fourier Transform analysis is carried out for each residual series, the estimations of the product spectral densities in the sub-tidal band are obtained by using a multi-station staking technique. The 8 common peaks are found after further removing the remaining frequency dependent pressure signals. The eigen-periods, quality factors and resonant strengths for these peaks are simulated. The numerical results show that the discrepancies of the eigenperiods for 3 of 8 peaks, compared to those of theoretical computation given by Smith, are only 0.4%, -0.4% and 1.0%. This coincidence signifies that the dynamical phenomenon of the Earths solid inner core can be detected by using high precision ground gravity observations. The reliability of the numerical computation is also checked, the spectral peak splitting phenomenon induced by Earths rotation and ellipticity is preliminary discussed in this paper.